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Floating point number representation: 
 

Fixed point numbers represents integers and floating point numbers represent real numbers. 

Numeric Format: 

A number expressed in scientific notation has a sign, a fraction or significant( or mantissa) and an 

exponent. 
 

Ex: The number is : -1234.5678 
 

Scientific notation is : -1.2345678 * 103. Here the sign is negative, the significant is 1.2345678 and 

exponent is 3 and the base is 10. Computers use base as 2. 
 

Disadvantages of Scientific notation: 



Most of the numbers can be expressed in many different ways. Ex: -1.2345678*103 = -1234567.8* 10-3 

= etc. Computers are more efficient and have much simpler hardware if each number is uniquely 

represented. 
 

Normalization as Solution to the problem: 
 

The floating point number must be normalzed, that is, each number’s significant is a fraction with no 

leading zeros. Thus the only valid floating point representation for - 1234.5678 is -.12345678* 104 . 

Note IEEE 754 uses an exception for this rule. 

Special cases: 
 

The number zero has only zeros in its significand and can not be normaliuzed.For this reason a special 

value is assigned to zero. Arithmetic algorithms must explicitly check for zero values and treat them as 

special cases. +∞ and - ∞ also have special representation and require special treatment. 
 

NaN: 
 

NaN means Not a Number. It represents the result of illegal operations, such as ∞ ÷ ∞ or taking the 

square root of a negative number. As with zero and infinity, NaN requires a special treatment in 

floating point arithmetic algorithms. 

A predefined format for computer storage of floating point number: 
 

Each number is stored in it’s normal form. 
 

Take the number: X = - 1234.5678 ; That is X= XS XFXE 
 

XS is the sign of X;  XF is it’s significand and XE is it’s exponent 
 

Since the radix point is located to the left of the most significant bit of the significand , the radix point 

is not stored.Thus the value X = -1234.5678 would be stored as XS = 1, XF = 12345678 and XE = 4 
 

Biasing: 
 

In the above representation foe exponent , there is no sign bit for exponent. We can use 2’s 

complement form but prevalent practice is to use biasing. 

If XE has 4 bits, then it can represent 16 items. That is the numbers from -8 to +7. To do this, a set bias 

value is added to the actual exponent. The result is ten stored in XE..For this the bias should be set to 8. 
 

The smallest possible exponent, -8, is represented as -8+bias = -8+8=0 or 0000 in binary. 
 

The largest possible exponent, +7, is represented as +7+ bias =+7+8= 15= 1111 in binary. The 

arithmetic algorithms must account for the bias when generating their results. 
 

 
 
 
 
 
 



Characteristics of floating point numbers: 
 

The characteristics are 1. Precision 2. Gap 3. Range 
 

Precision: 
 

It characterizes how precise a floating point value can be. It is defined as the number of bits in the 

significand. The greater the number of bits in the significand, the greater is the CPU’s precision and the 

more precise is it’s value. Many CPUs have 2 representations for floating point numbers. They are 

called single precision and double precision here double precision has twice the number of bits. 
 

Gap: 
 

The gap is the difference between two adjacent values. It’s value depends on the value of the 

exponent. 
 

Take the number: X = .10111010 * 23 . 
 

It’s adjacent values are : .10111001 * 23 and .10111011* 23 . 

Each number produce a gap of .00000001* 23 . 

In general the gap for floating point value X can be expressed as 2( Xe-precision) 
 

Range: 
 

The range of a floating point representation is bounded by it’s smallest and largest possible values. 

Overflow and underflow; 

Overflow occurs when an operation produces a result that can not be stored in computers’s floating 

point registers. Underflow occurs when an operation produces a result between zero and either the 

positive or negative smallest possible value. 
 

IEEE 754 Floating point standard: 
 

This standard specifies 2 precision for floating point numbers which are called single precision and 

double precision floating point representations. 
 

Single Precision Format: 
 

This format has 32 bits. 1 bit for sign; 8 bits for the exponent; 23 for the significand. The significand 

also includes an implied 1 to the left of its radix point( except for special values and denormalized 

numbers). 



Error Detection codes: 
 

Information is stored as binary codes and are transmitted by serial or parallel communication. During 

transmission noise is added to the signal and it may change binary bits in the code from 1 to 0, and vice 

versa. An error detection code is a binary code that detects digital errors during transmission. The 

detected errors can not be corrected but their presence is indicated. 
 

Parity bit: 
 

The most common error detection code used is the parity bit. A parity bit is an extra bit included with a 

binary message to make the total number of 1’s either odd or even. If the message consists of n bits , 

then the error detection code consists of n+1 bits. If the bit added to the message makes the sum of 1’s 

odd in the error detection code, then the scheme is called odd-parity. If the sum of bits is even , the 

scheme is called even parity scheme. 
 

Message xyz P(odd) P(even) Error detection 

code, odd parity 

Error detection 

code, even parity 

000 1 0 0001 0000 

 
001 

0 1 0010 0011 

010 0 1 0100 0101 

011 1 0 0111 0110 

100 0 1 1000 1001 

101 1 0 1011 1011 

110 1 0 1101 1101 

111 0 1 1110 1111 



Parity Generator and Parity Checker: 
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The circuit arrangement checks the occurrence of error any odd number of times. An even number of 

errors is not detected. 

We note that P(even) function is the exclusive –OR x,y,z because it is equal to 1 when either one or all 3 

of the variables are equal to 1. The P(odd) function is the complement of the P(even) function. 
 

Assume at the sending end the message bits and odd parity bit is generated. The EX-OR gates generate 

P(even ) function and to generate P(odd), the complement of P(even) is used. 

The 4 bits transmitted has an odd number of I’s. If an error occurs during transmission, then the number 

of 1’s become even. Hence parity checker checks for even parity. 

COMPUTER ARITHMETIC: 
 

Addition, subtraction, multiplication are the four basic arithmetic operations. Using these operations 

other arithmetic functions can be formulated and scientific problems can be solved by numerical 

analysis methods. 

Arithmetic Processor: 
 

It is the part of a processor unit that executes arithmetic operations. The arithmetic instructions 

definitions specify the data type that should be present in the registers used . The arithmetic instruction 

may specify binary or decimal data and in each case the data may be in fixed-point or floating point 

form. 
 

Fixed point numbers may represent integers or fractions. The negative numbers may be in signed- 

magnitude or signed- complement representation. The arithmetic processor is very simple if only a 

binary fixed point add instruction is included. It would be more complicated if it includes all four 

arithmetic operations for binary and decimal data in fixed and floating point representations. 
 

Algorithm: 
 

Algorithm can be defined as a finite number of well defined procedural steps to solve a problem. 

Usually, an algorithm will contain a number of procedural steps which are dependent on results of 

previous steps. A convenient method for presenting an algorithm is a flowchart which consists of 

rectangular and diamond –shaped boxes. The computational steps are specified in the rectangular 

boxes and the decision steps are indicated inside diamond-shaped boxes from which 2 or more 

alternate path emerge. 
 

 
 
 
 
 
 
 
 
 
 



Addition and Subtraction: 
 

3 ways of representing negative fixed point binary numbers: 
 

1. Signed-magnitude representation---- used for the representation of mantissa for floating point 

operations by most computers. 

2. Signed-1’s complement 

3. Signed -2’s complement—Most computers use this form for performing arithmetic operation 

with integers 

 

Addition and subtraction algorithm for signed-magnitude data 

 

Let the magnitude of two numbers be A & B. When signed numbers are added or subtracted, 

there are 4 different conditions to be considered for each addition and subtraction depending 

on the sign of the numbers. The conditions are listed in the table below. The table shows the 

operation to be performed with magnitude(addition or subtraction) are indicated for different 

conditions. 

 

 
Sl.No 

 
Operation 

Add 

Magnitudes 

Subtract magnitudes 

When A> B When A< B When A=B 

1 ( +A ) + (+B ) + ( A + B )    

2 ( +A ) + (-B )  +( A-B ) -( B-A ) +( A-B ) 

3 ( -A ) + (+B )  -( A-B ) +( B-A ) +( A-B ) 

4 ( -A ) + (-B ) - ( A + B )    

5 ( +A ) - (+B )  +( A-B ) -( B-A ) +( A-B ) 

6 ( +A ) - (-B ) + ( A + B )    

7 ( -A ) - (+B ) - ( A + B )    

8 ( -A ) - (-B )  -( A-B ) +( B-A ) +( A-B ) 

 

 
The last column is needed to prevent a negative zero. In other words, when two equal numbers 

are subtracted, the result should be +0 not -0. 

 
The algorithm for addition and subtraction ( from the table above): 

Addition Algorithm: 

When the signs of A and B are identical, add two magnitudes and attach the sign of A to the 

result. When the sign of A and B are different, compare the magnitudes and subtract the 

smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the 



complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make 

te sign of the result positive. 

Subtraction algorithm: 

When the signs of A and B are different, add two magnitudes and attach the sign of A to the 

result. When the sign of A and B are identical, compare the magnitudes and subtract the 

smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the 

complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make 

te sign of the result positive. 

Hardware Implementation: 

Let A and B are two registers that hold the numbers. 

AS and BS are 2, flip-flops that hold sign of corresponding numbers. The result is stored In A and 

AS .and thus they form Accumulator register. 

We need to perform micro operation, A+ B and hence a parallel adder. 

A comparator is needed to establish if A> B, A=B, or A<B. 

We need to perform micro operations  A-B and B-A and hence two parallel subtractor. 

An exclusive OR gate can be used to determine the sign relationship, that is, equal or not. 

Thus the hardware components required are a magnitude comparator, an adder, and two 

subtractors. 

Reduction of hardware by using different procedure: 

1. We know subtraction can be done by complement and add. 

2. The result of comparison can be determined from the end carry after the subtraction. 

We find An adder and a complementer can do subtraction and comparison if 2’s 

complement is used for subtraction. 

 

Hardware forsigned-magnitude addition and subtraction: 

 

 
AVF Add overflow flip flop. It hold the overflow bit when A & B are added. 



Flip flop E—Output carry is transferred to E. It can be checked to see the relative magnitudes of the two 

numbers. 
 

A-B = A +( -B )= Adding a and 2’s complement of B. 
 

The A register provides other micro operations that may be needed when the sequence of steps in the 

algorithm is specified. 
 

The complementer Passes the contents of B or the complement of B to the Parallel Adder depending on 

the state of the mode control B. It consists of EX-OR gates and the parallel adder consists of full adder 

circuits. The M signal is also applied to the input carry of the adder. 

When input carry M=0, the sum of full adder is A +B. When M=1, S = A + B’ +1= A – B 

Hardware algorithm: 

Flow Chart for Add and Subtract operations: 
 

The EX-OR gate provides 0 as output when the signs are identical. It is 1 when the signs are different. 

A + B is computed for the following and the sum is stored in EA: 

1. When the signs are same and addition operation is required. 

2. When the signs are different and subtract operation is required. 

 
The carry in E after addition indicates an overflow if it is 1 and it is transferred to AVF, the 

add overflow flag 

 
A-B = A+ B’+1 computed for the following: 

1. When the signs are different and addition operation is required. 

2. When the signs are same and subtract operation is required. 

No overflow can occur if the numbers are subtracted and hence AVF is cleared to Zero. 

 
[ the subtraction of 2 n-digit un signed numbers M-N ( N≠0) in base r can be done as follows: 

1. Add minuend M to thee r’s complement of the subtrahend N. This performs M-N +rn . 

2. If M ≥ N, The sum will produce an end carry rnwhich is discarded, and what is left is the result M-N. 

3. If M< N, the sum does not produce an end carry and is equal to rn–( N-M ), which is the r’s complement of the sum and place a negative 

sign in front.] 

A 1 in E indicates that A ≥ B and the number in A is the correct result. 

If this number in A is zero, the sign AS must be made positive to avoid a negative zero. 

A 0 in E indicates that A< B. For this case it is necessary to take the 2’s complement of 

the value in A. 

In the algorithm shown in flow chart, it is assumed that A register has circuits for micro 

operations complement and increment. Hence two complement of value in A is 

obtained in 2, micro operations. In other paths of the flow chart , the sign of the result is 

the same as the sign of A, so no change in AS is required. 



However When A < B, the sign of the result is the complement of original sign of A. 

Hence The complement of AS stored in AS. 

Final Result: AS A 

Flow chart for ADD and Subtract operations: 

 
 
 
 

Addition and Subtraction with signed-2’s complement Data.: 

Arithmetic Addition: 

This method does not need a comparison or subtraction but only addition and 

complementation. The procedure is as below: 

1. Represent the negative numbers in 2’s complement form. 

2. Add the two numbers including the sign bits and discard any carry out of sign bit 

position. 

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign 

bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is 

set to zero. 

4. If the result is negative, take the 2’s complement of the result to get a correct 

negative result. 

 

 

 

 

 



BR Register 

V Complementer&Parallel Adder 

Arithmetic Subtraction: 
 

1. Represent the negative numbers in 2’s complement form. 
 

2. Take the 2’s complement of the subtrahend including the sign bit and add it to the 

minuend including the sign bit. 

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign 

bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is 

set to zero. 

4. Discard the carry out of the sign bit position. 
 

Note: A subtraction operation can be changed to an addition operation if the sign of the subtrahend is 

changed. 

 
 
 
 

Overflow 

 
 

Fig: Hardware for Signed 2/s complement for addition/ subtractioin. 
 

 
 
 
 
 
 
 

AC Register 



 

Multiplication Algorithm: 
 

Hardware implementation of multiplication of numbers in signed – magnitude form: 
 

1. A adder is provided to add two binary numbers and the partial product is accumulated in a register. 

2. Instead of shifting the multiplicand to the left, the partial product is shifted to the right, which result 

in leaving the partial product and the multiplicand in the required relative positions. 

3. When the corresponding bit of the multiplier is zero, there is no need to add all zeros to the partial 

product, since it will not alter it’s value. 

The hardware consists of 4 flip flops, 3 registers, one sequence counter , an adder and complementer. 
 

 

Q register&QS flip flop : contains multiplier & Its sign 
Sequence counter : It is set to a value equal to the number of bits in the multiplier 
B Register& BS flipflop : It contains the multiplicand,& its sign 
A Register, E Flip flop : Initialized to ‘ 0’. AS denotes sign of partial product 
EA Register  : hold partial product, with carry generated in addition being shifted to E . 
Qn : Rightmost bit of the multiplier; AQ : will contain the final product. 

 
 

As AQ represent product register, both AS QSrepresent the sign of the partial product or product. 
The number to be multiplied are stores in memory as n bit sign magnitude numbers and when 
transferred to register msb bit go to sign flipflop and remaining n-1 bits go to registers. Hence SC is 
initially set to n-1. 
Let the lower order bit of the multiplier in Qntested. 
If it is 1, the multiplicand in B is added to the present partial product in A. 
If it is a ‘0’, nothing is done. Register EAQ is then shifted once to the right to form the new partial 
product. The sequence counter is decremented by 1 and it’s new value checked. If it is not equal to 
zero, the process is repeated and a new partial product is formed. The process stops when SC = 0. 



The final product is available in both A and Q, with A holding the most significant bits and Q holding the 
least significant bits. 

 
 

 

Flowchart for multiply operation: 

 
 

 
Numerical Example for the above algorithm: 

 

Multiplicand B= 10111 E A Q SC 

Multiplier in Q 0 00000 10011 101 

Qn =1;add B  10111   

First Partial Product 0 10111   

Shift Right EAQ 0 01011 11001 100 

Qn =1;add B  10111   

Second Partial Product 1 00010 



Shift Right EAQ 0 10001 01100 011 

Qn =0; Shift Right EAQ 0 01000 10110 010 

Qn =0; Shift Right EAQ 0 00100 01011 001 

Qn =1;add B 

Fifth Partial Product 

Shift Right EAQ 

 
 

0 
 

0 

10111 
 

11011 
 

01101 

 
 
 
 

10101 

 
 
 
 

000 

Final Product in AQ 
 

AQ = 0110110101 

    

 
 

 
 

Booth Multiplication Algorithm: 

Multiplication of signed- 2’s complement integers: 
 

This algorithm uses the following facts. 
 

1. A string of 0’s in the multiplier requires no addition but just shifting. 

2. A string of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 - 2m. 

Example: Consider the binary number: 001110( +14 ) 

The number has a string of 1’s from 23 to 21 . Hence k = 3 and m= 1. As other bits are 0’s, the 

number can be represented as 2k+1 - 2m = 24 – 21 = 16-2 = 14. Therefore the multiplication M * 14 , 

where M is the multiplicand and 14 the multiplier can be done as Mx 24 –M x 21. 

This can be achieved by shifting binary multiplicand M four times to the left and subtracting M 

shifted left once which is equal to (Mx 24 –M x 21. ). 
 

 Shifting and addition/subtraction rules for multiplicand in Booth’s Algorithm: 
 

1. The multiplicand is subtracted from the partial product upon encountering the first least 

significand 1 in a string of I’s in the multiplier. 



2. The multiplicand is added to the partial product upon encountering the first 0 ( provided that 

there was a previous 1)in a string of 0’s in the multiplier. 

3. The partial product does not change when the multiplier bit is identical to the previous 

multiplier bit 

Hardware Implementation of Booth Algorithm: 

Note: Sign bit is not separated from register. QR register contains the multiplier register and 

Qnrepresent the least significant bit of the multiplier in QR. Qn+1 is an extra flip flop appended to 

QR to facilitate a double bit inspection of the multiplier. 

AC register and appended Qn+1 are initially cleared to 0. 

Sequence counter Sc is set to the number n which is equal to the number of bits of bits In the 

multiplier. 

QnQn+1 are to successive bits in the multiplier 
 

Example for multiplication using Boot h algorithm: 
 

QnQn+1 BR = 1011 ,𝐵𝑅′+1 = 01001 AC QR Qn+1 
SC 

10 Initial 00000 10011 0 101 

 Subtract BR 01001    

  01001    

 ashr 00100 11001 1 100 

11 ashr 00010 01100 1 011 

01 Add BR 10111    

  11001    

 ashr 11100 10110 0 010 

00 ashr 11110 01011 0 001 

10 Subtract BR 01001    



Multiplicand bits are b1 and b0 .Multiplier bits are a1 and a0 .The first partial product is obtained 

by multiplying a0 by b1 b0 . The bit multiplication is implemented by AND gate. First partial 

product is made by two AND gates. Second partial product is made by two AND gates. The two 

partial products are added with two half adder circuits. 

  
Ashr 

00111 

00011 

 
10101 

 
1 

 
000 

 
 
 

Algorithm in flowchart for multiplication of signed 2’s complement numbers. 
 

 

Array Multiplier: 

2 -bit by 2- bit Array Multiplier: 
 



 

 
 

Combinational circuit binary multiplier: 
 

A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there bits in the 

multiplier. The binary output in each level of the AND gates is added in parallel with the partial product 

of the previous level to form a ne partial product. The last level produces the product. For j multiplier 

and k multiplicand bits, we need j*k AND Gates and (j-1)*k bit adders to ptoduce a product of j+k bits. 
 

4- bit by 3-bit Array Multiplier: 
 

 
 

 



Division Algorithms: 
 

Division Process for division of fixed point binary number in signed –magnitude representation: 
 

Let dividend A consists of 10 bits and divisor B consists of 5 bits. 
 

1. Compare the 5 most significant bits of the dividend with that of divisor. 

2. If the 5 bit number is smaller than divisor B, then take 6 bits of the dividend and compare with the 5 bit divisor. 

3. The 6 bit number is greater than divisor B. Hence place a 1 for the quotient bit in the sixth position above the 

dividend. Shift the divisor once to the right and subtracted from the dividend. The difference is called partial 

remainder. 

4. Repeat the process with the partial remainder and divisor. If the partial remainder is equal or greater than or equal to 

the divisor, the quotient bit is equal to 1.The divisor is then shifted right and subtracted from the partial remainder. If 

the partial remainder is small than the divisor, then the quotient bit is zero and no subtraction is needed. The divisor 

is shifted once to the right in any case,. 

 

Hardware Implementation of division for signed magnitude fixed point numbers: 

 
To implement division using a digital computer, the process is changed slightly for convenience. 

1. Instead of shifting the divisor to the right, the dividend or the partial remainder, is shifted to the left so as to 

leave the two numbers in the required relative position. 

2. Subtraction may be achieved by adding A (dividend)to the 2’s complement of B(divisor). The information about 

the relative magnitude is then available from end carry. 

3. Register EAQ is now shifted to the left with 0 inserted into Qn and the previous value of E is lost.. 

4. The divisor is stored in B register and the double length dividend  is stored in registers A and Q. 

5. The dividend is shifted to the left and the divisor is subtracted by adding it’s 2’s complement value. 

6. If E= 1, it signifies that A ≥ B.A quotient bit is inserted into Qnand the partial remainder is shifted to the left to 

repeat the process. 

7. If E = 0, it signifies that A < B so the quotient Qn remains 0( inserted during the shift). The value of B is then 

added to restore the partial remainder in A to its previous value. The partial remainder is shifted to the left and 

the process is repeated again until all 5 quotient bits are formed. 

8. At the end Q contains the quotient and A the remainder. If the sign of dividend and divisor are alike, the quotient 

is positive and if unalike, it is negative. The sign of the remainder is the same as dividend. 



Complementer and parallel 

adder 

 

  
 

 

Qn 
 

0 
 

Hardware for implementing division of fixed point signed- Magnitude Numbers 

Example of Binary division with digital hardware:   Divisor B = 10001, B + 1 = 01111 

  E A Q SC 

 Dividend:  01110 00000 5 

 Shl EAQ  11100 00000  

 Add , B + 1  01111   

 E = 1 1 01011   

 Set Qn= 1 1 01011 00001 4 

 Shl EAQ 0 10110 00010  

 Add , B + 1  01111   

 E = 1 1 00101   

 Set Qn= 1 1 00101 00011 3 

 Shl EAQ 0 01010 00110  

 Add , B + 1  01111   

 E= 0; Leave Qn= 0 0 11001 00110  

 Add B  10001   

B Register Sequence Counter( SC) 

AS QS 

E 
Q Register A Register 



 Restore remainder 1 01010  2 

 Shl EAQ 0 10100 01100  

 Add , B + 1  01111   

 E = 1 1 00011   

 Set Qn= 1 1 00011 01101 1 

 Shl EAQ 0 00110 11010  

 Add , B + 1  01111   

 E= 0; Leave Qn= 0 0 10101 11010  

 Add B  10001   

 Restore remainder 1 00110 11010 0 

 Neglect E     

 Remainder in A  00110 11010  

 Quotient in Q     

 
 

Divide overflow: 
 

When the dividend is twice as long as the divisor, the condition for overflow can be stated as follows: 
 

A divide-overflow condition occurs if the higher order half bits of the dividend constitute a number 

greater than or equal to the divisor. If the divisor is zero, then the dividend will definitely be greater 

than or equal to divisor. Hence divide overflow condition occurs and hence the divide-overflow –flip flop 

will be set. Let the flip flop be called DVF. 
 

Handling DVF: 
 

1. Check if DVF is set after each divide instruction. If DVF is set, then the program branches to a 

subroutine that takes corrective measures such as rescaling the data to avoid overflow. 

2. An interrupt is generated if DVF is set. The interrupt causes the processor to suspend the 

current program and branch to interrupt service routine to take corrective measure. The most 



common corrective measure is to remove the program and type an error message that explains 

the reasons. 

3. The divide overflow can be handled very simply if the numbers are represented in floating point 

representation. 

Flow chart for divide operation: 
 

 
 

Assumption: 
 

Operands are transferred from memory to registers as n bit words.n-1 bit form magnitude and 1 bit 

shows the sign. 



A divide overflow condition is tested by subtracting the divisor in B from half of the bits of dividend 

stored in A. If vA ≥ B, the DVF is set and the operation is terminated prematurely. If A < B, no DVF occurs 

and so the value of dividend is restored by adding B to A. 
 

The division of the magnitudes starts by shifting the dividend in AQ to the left, with the higher order bit 

shifted into E. If the bit shifted into E is 1, we know that EA is greater than B because EA consists of a 1 

followed by n-1 bits while B consists of only n-1 bits. In this case, B must be subtracted from EA and 1 

inserted into Qn for the quotient bit. Since register A is missing the higher order bit of the dividend 

(which is in E), it’s value is EA – 2n-1 . Adding to this value the 2’s complement of B results in 

 

 
(EA-2n-1 ) + ( 2n-1 –B )= E-B. The carry from the addition is not transferred to E if we want E to remain a 1. 

 

If the shift left operation inserts a zero into E, the divisor is subtracted by adding it’s 2’s complement 

value and the carry is transferred into E. If E = 1, it signifies that A ≥ B and hence Qn is set to 1. If E = 0, it 

signifies that A < B and the original number is restored by adding B to A. In the latter case we leave a 0 in 

Qn .( 0 was inserted during the shift). 
 

This process is repeated again with register A holding the partial remainder. After n-1 times, the 

quotient magnitude is formed in the register Q and the remainder is found in register A. 
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1.1.2.12 Lecture-12 
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Fill in the blanks type of questions <Minimum of ten> 

a. The decimal representation for hex number F3 is  . 

 
b. The binary equivalent for the decimal number  41.6875 is     

 
c. The BCD code for the decimal number 248 is   . 

 
d. For a given number N in base r having n digits, the (r-1)’s complement of N is defined as 

 
e. The 10’s complement of a decimal number is obtained by adding to the 9’s complement 

value. 



f. When 2 unsigned numbers are added, an overflow is detected from the of 

the most significant position. 

 
g. An overflow for addition/ subtraction of two signed numbers is detected when the carry into 

the sign bit position and carry out of the sign bit position are  . 

 
h. Booth multiplication algorithm is followed when the binary integers are represented in 

 
i. When Booth algorithm is used for multiplication, the partial product does not change when the 

multiplier .is identical to the previous multiplier .  

 
j. Floating point multiplication and division do not require an alignment of the . 

 

 
Answers: ( 1). 243 (2)  101001.1011 (3) 0010 0100 1000 

 
(4) (  rn-1)-N (5)   1 (6)   carry out (7) not equal 

 
(8) signed 2’s complement representation for negative integers. (9) bit, bit 

 
(10) mantissa 

 

Multiple choice questions<Minimum of ten> 

1. Floating point representation is used to store 
(A) Boolean values (B) whole numbers (C) real integers (D) integers 
Ans: C 

 

2. In computers, subtraction is generally carried out by 
(A) 9’s complement (B) 10’s complement (C) 1’s complement (D) 2’s complement 

 

Ans: D 
 

3. The circuit used to store one bit of data is known as 
(A) Register (B) Encoder (C) Decoder (D) Flip Flop 
Ans: D 

 

4. Which of the following is not a weighted code? 
(A) Decimal Number system (B) Excess 3-cod 
(C) Binary number System (D) None of these 
Ans: B 

 

5. Assembly language 
(A) uses alphabetic codes in place of binary numbers used in machine language 
(B) is the easiest language to write programs 
(C) need not be translated into machine language 



(D) None of these 
Ans: A 

 

6. The multiplicand register & multiplier register of a hardware circuit implementing booth's 
algorithm have (11101) & (1100). The result shall be 
(A) (812) 10 (B) (-12) 10 (C) (12) 10 (D) (-812) 10 
Ans: A 

 

7. What characteristic of RAM memory makes it not suitable for permanent storage? 
(A) too slow (B) unreliable (C) it is volatile (D) too bulky 
Ans: C 

 

8. (2FAOC) 16 is equivalent to 
(A) (195 084) 10 (B) (001011111010 0000 1100) 2 (C) Both (A) and (B) (D) None of these 
Ans: B 

 

9. The average time required to reach a storage location in memory and obtain its contents is 
called the 
(A) seek time (B) turnaround time (C) access time (D) transfer time 
Ans: C 

 

10. In signed-magnitude binary division, if the dividend is (11100) 2 and divisor is (10011) 2 then 
the result is 
(A) (00100) 2 (B) (10100) 2 (C) (11001) 2 (D) (01100) 2 

k. Ans: B 

True or False questions<Minimum of ten> 

 

Fill the blank with true or false. 
1. EEPROM comes under volatile memory category. 

 
2. Thumb drive or pen drive is semiconductor memory. 

 
3. The control unit generates the appropriate signal at the right moment.    

 
4. While executing a program, CPU brings instruction and data from disk memory. 

 
5. A memory module of capacity 16 * 4 , indicates a storage of 128 bits.    

 
6. A memory module of capacity of 1024 locations, the required address bus size is 10.     

 
7. The program counter PC is used to store the address of the next instruction to be fetched from 

Accumulator. 

. 



n-1 n+1 
 

8. For n-bit signed integer, the range of numbers that can be represented is – 2 to 2 . 

 
9. Given a number N in base r having n digits, the (r-1)’s complement of N is defined as 

( rn-1 ) – r. 

10. Floating point representation uses mantissa and an exponent part  of radix R .     
 

 
Answers: ( 1). false (2)   true   (3)  true (4)  false (5) false 

(6)   true (7)   false (8) false (9)false (10) true 
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