DATA REPRESENTATION

1

Data Types

Complements

Fixed Point Representations

Floating Point Representations

Other Binary Codes

Error Detection Codes

Data Types

DATA REPRESENTATION

Information that a Computer is dealing with

* Data

- Numeric Data

Numbers(Integer, real)

- Non-numeric Data Letters, Symbols

* Relationship between data elements

- Data Structures Linear Lists, Trees, Rings, etc

* Program(Instruction)

Data Types

NUMERIC DATA REPRESENTATION

Data

Numeric data - numbers(integer, real) Non-numeric data - symbols, letters Number System

Nonpositional number system

- Roman number system

Positional number system

- Each digit position has a value called a *weight* associated with it
- Decimal, Octal, Hexadecimal, Binary

Base (or radix) R number

-V(A_R) = $\sum_{i=1}^{n-1} a_i R^i$

i = -m

- Uses R distinct symbols for each digit

• Example
$$A_R = a_{n-1}a_{n-2}...a_1a_0.a_{-1}...a_m$$

Radix point(.) separates the integer portion and the fractional portion

R = 10 Decimal number system, R = 2 Binary R = 8 Octal, R = 16 Hexadecimal

Data	Represe	ntation		4					
	WHY	POSITIONA	L NUMBER	SYSTEM	IN	THE	DIGITAL	COMPUTE	RS ?
	Major	Consideratio	n is the COST	and <i>TIME</i>					
	- Co - Tii	ost of building Arithmetic an me to process	g <i>hardware</i> Id Logic Unit, (sing	CPU,Comm	unio	cation	S		
	Arithn	netic - Additic	on of Numbers	- Table for	r Ad	dition		Binary Addition	Table
	* N	Non-positiona - Table for a > Imposs if it car	I Number Syst addition is infin sible to build, w n be built	em nite very expens	sive	even		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n Table 6 7 8 9 6 7 8 9 7 8 9 10
	* F	Positional Nur - Table for A > Physica the sm expens	nber System Addition is fini- ally realizable, aller the table sive> Binary	te but cost w size, the le is favorabl	ise ss e to	Decin	nal	2 2 3 4 5 6 2 2 3 4 5 6 7 3 3 4 5 6 7 8 4 4 5 6 7 8 9 5 5 6 7 8 9 101 6 6 7 8 9 10111 7 7 8 9 101112 8 8 9 1011121314	8 9 1011 9 101112 10111213 11121314 12131415 13141516 14151617 15161718

Data Types

REPRESENTATION OF NUMBERS

Decima	al Binary	Octal	Hexadecimal
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
Binary, octal, an	d hexaded	cimal co	nversion
1 2	75	4	3
10101	1 1 1 0 1	100	0 1 1
A F	6		3

Octal	
Binary	/
Hexa	

Computer Organization

5

Data Types

CONVERSION OF BASES

Base R to Decimal Conversion

$$A = a_{n-1} a_{n-2} a_{n-3} \dots a_0 \dots a_{-1} \dots a_{-m}$$

$$V(A) = \sum a_k R^k$$

$$(736.4)_8 = 7 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1}$$

$$= 7 \times 64 + 3 \times 8 + 6 \times 1 + 4/8 = (478.5)_{10}$$

$$(110110)_2 = \dots = (54)_{10}$$

$$(110.111)_2 = \dots = (6.785)_{10}$$

$$(F3)_{16} = \dots = (243)_{10}$$

$$(0.325)_6 = \dots = (0.578703703 \dots)_{10}$$

Decimal to Base R number

- Separate the number into its *integer* and *fraction* parts and convert each part separately.
- Convert integer part into the base R number
- --> successive divisions by R and accumulation of the remainders.
- Convert fraction part into the base R number
 - --> successive multiplications by R and accumulation of integer digits

Data Representation	7		 Data Types
	EXAI	MPLE	
Convert 41.687	5 ₁₀ to base 2.	Fraction = 0.6875 0.6875	
Int	eger = 41	<u>x 2</u>	
41		1.3750	
20	1	x 2	
10	0	0.7500	
5	0	<u>x 2</u>	
2	1	1.5000	
1	0	<u>x 2</u>	
0	1	1.0000	
(41) ₁	$_{0} = (101001)_{2}$	$(0.6875)_{10} = (0.1011)_2$	
	$(41.6875)_{10} = (1)^{10}$	101001.1011) ₂	
Exercise			
Convert (63).	o to base 5: (223)₅		
Convert (186	$(3)_{10}$ to base 8: (3507))。)
Convert (0.63	671875) ₁₀ to hexaded	cimal: (0.A3) ₁₆	

Complements

COMPLEMENT OF NUMBERS

Complements

to convert positive to negative or vice versa

Two types of complements for base R number system:

- R's complement and (R-1)'s complement

The (R-1)'s Complement

Subtract each digit of a number from (R-1)

Example

- 9's complement of 835₁₀ is 164₁₀
- 1's complement of 1010₂ is 0101₂(bit by bit complement operation)

The R's Complement

Add 1 to the low-order digit of its (R-1)'s complement

Example

- 10's complement of 835_{10} is $164_{10} + 1 = 165_{10}$
- 2's complement of 1010_2 is $0101_2 + 1 = 0110_2$

FIXED POINT NUMBERS

Numbers: Fixed Point Numbers and Floating Point Numbers

Binary Fixed-Point Representation

 $X = x_n x_{n-1} x_{n-2} \dots x_1 x_0 \dots x_{-1} x_{-2} \dots x_{-m}$ Sign Bit(x_n): 0 for positive - 1 for negative Remaining Bits(x_{n-1} x_{n-2} ... x₁ x₀. x₋₁ x₋₂ ... x_{-m})

- Following 3 representations

Signed magnitude representation Signed 1's complement representation Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number Only one way to represent +9 ==> 0 001001 Three different ways to represent -9: In signed-magnitude: 1 001001 In signed-1's complement: 1 110110 In signed-2's complement: 1 110111 In general, in computers, fixed point numbers are represented either integer part only or fractional part only.

CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS

Complement

Signed magnitude: Complement *only* the sign bit Signed 1's complement: Complement *all* the bits including sign bit Signed 2's complement: Take the 2's complement of the number, *including* its sign bit.

Maximum and Minimum Representable Numbers and Representation of Zero

 $X = X_n X_{n-1} \dots X_0 \dots X_{-1} \dots X_{-m}$

Signed Magnitude

Max: 2 ⁿ - 2 ^{-m}	011 11.11 1
Min: -(2 ⁿ - 2 ^{-m})	111 11.11 1
Zero: +0	000 00.00 0
-0	100 00.00 0

Signed 1's Complement

 Max: 2ⁿ - 2^{-m}
 011 ... 11.11 ... 1

 Min: -(2ⁿ - 2^{-m})
 100 ... 00.00 ... 0

 Zero: +0
 000 ... 00.00 ... 0

 -0
 111 ... 11.11 ... 1

Signed 2's Complement

Max: 2 ⁿ - 2 ^{-m}	011 11.11 1
Min: -2 ⁿ	100 00.00 0
Zero: 0	000 00.00 0

ARITHMETIC ADDITION: SIGNED MAGNITUDE

- [1] Compare their signs
- [2] If two signs are the *same*, *ADD* the two magnitudes Look out for an *overflow*
- [3] If not the same, compare the relative magnitudes of the numbers and then
 - SUBTRACT the smaller from the larger --> need a subtractor to add
- [4] Determine the sign of the result

6 + 9	-6 + 9
6 0110 <u>+) 9 1001</u> 15 1111 -> 01111	9 1001 - <u>) 6 0110</u> 3 0011 -> 00011
6 + (-9) 9 1001 -) <u>6 0110</u> - 3 0011 -> 10011 Overflow 9 + 9 or (-9) + (-9) 9 1001 +) 9 1001 overflow (1)0010	-6 + (-9) 6 0110 + <u>) 9 1001</u> -15 1111 -> 11111

Fixed Point Representations

ARITHMETIC ADDITION: SIGNED 2's COMPLEMENT

Add the two numbers, including their sign bit, and discard any carry out of leftmost (sign) bit

Example

Data Representation

13

Fixed Point Representations

ARITHMETIC ADDITION: SIGNED 1's COMPLEMENT

Add the two numbers, including their sign bits.

- If there is a carry out of the most significant (sign) bit, the result is incremented by 1 and the carry is discarded.

COMPARISON OF REPRESENTATIONS

- * Easiness of negative conversion
 - S + M > 1's Complement > 2's Complement
- * Hardware
 - S+M: Needs an adder and a subtractor for Addition
 - 1's and 2's Complement: Need only an adder
- * Speed of Arithmetic

2's Complement > 1's Complement(end-around C)

* Recognition of Zero

2's Complement is fast

Fixed Point Representations

ARITHMETIC SUBTRACTION

Subtraction

Add complement of the subtrahend to the minuend including the sign bits.

Take the complement of the subtrahend

 $(\pm A) - (-B) = (\pm A) + B$ $(\pm A) - B = (\pm A) + (-B)$

Floating Point Representation

FLOATING POINT NUMBER REPRESENTATION

* The location of the fractional point is not fixed to a certain location * The range of the representable numbers is wide

F = EM

- Mantissa

Signed fixed point number, either an integer or a fractional number

- Exponent

Designates the position of the radix point

Decimal Value

 $V(F) = V(M) * R^{V(E)}$ M: MantissaE: ExponentR: Radix

CHARACTERISTICS OF FLOATING POINT NUMBER REPRESENTATIONS

Normal Form

- There are many different floating point number representations of the same number --> Need for a unified representation in a given computer
- the most significant position of the mantissa contains a non-zero digit

```
Representation of Zero
```

```
- Zero
Mantissa = 0
```

- Real Zero

```
Mantissa = 0
Exponent
```

- = smallest representable number which is represented as
 - 00 ... 0
 - <-- Easily identified by the hardware

External Representations

EXTERNAL REPRESENTATION

Numbers

Most of numbers stored in the computer are eventually changed

by some kinds of calculations

--> Internal Representation for calculation efficiency

--> Final results need to be converted to as External Representation for presentability

Alphabets, Symbols, and some Numbers

Elements of these information do not change in the course of processing

--> No needs for Internal Representation since they are not used for calculations

--> External Representation for processing and presentability

	Decimal	BCD Code	
Fxample	0	0000	
Decimal Number: A-bit Binary Code	1	0001	
Decimal Number: 4-bit binary Code BCD(Binery Coded Decimal)	2	0010	
BCD(Binary Coded Decimal)	3	0011	
	4	0100	
	5	0101	
	6	0110	
	7	0111	
	8	1000	
	9	1001	

External Representations

			OTHE	R DECII	MAL CODES
Decimal	BCD(8421)	2421	84-2-1	Excess-3	
0	0000	0000	0000	0011	
1	0001	0001	0111	0100	
2	0010	0010	0110	0101	
3	0011	0011	0101	0110	Note: 8,4,2,-2,1,-1 in this table is the weight
4	0100	0100	0100	0111	associated with each bit position.
5	0101	1011	1011	1000	d2 d2 d1 d0, symbol in the ender
6	0110	1100	1010	1001	as az al au: symbol in the codes
7	0111	1101	1001	1010	BCD: $d3 \times 8 + d2 \times 4 + d1 \times 2 + d0 \times 1$
8	1000	1110	1000	1011	==> 8421 code.
9	1001	1111	1111	1100	2421: d3 x 2 + d2 x 4 + d1 x 2 + d0 x 1
					84-2-1: d3 x 8 + d2 x 4 + d1 x (-2) + d0 x (-1)

Excess-3: BCD + 3

21

BCD: It is difficult to obtain the 9's complement. However, it is easily obtained with the other codes listed above.

a Representation		22								Other Binary
	GR	AY	C	:0	DE					
* Characterized by h one digit bety	aving their repr ween consecuti	rese ve ir	nta nte	tio ger	ns o 's	f the	biı	nar	y in	tegers differ in on
* Useful in analog-di	igital conversio	n.								
	Decimal		Gra	y		B	inai	'y		7
	number	g ₃	g ₂	g ₁	\mathbf{g}_{0}	b ₃	b ₂	b ₁	b ₀	
	0	0	0	0	0	0	0	0	0	-
	1	0	0	0	1	0	0	0	1	
	2	0	0	1	1	0	0	1	0	
	3	0	0	1	0	0	0	1	1	
		0	1	1	0	0	1	0	0	
4-bit Gray c	odes 5	0	1	1	1		1	0	1	
	6		1	0	1	0	1	1	0	
			1	0	0		1	1	1	
	9		1	0	1	1	0	0	1	
	10		1	1	1		0	1	0	
	11		1	1	0		0	1	1	
	12	1	0	1	0	1	1	0	0	
	13	1	0	1	1	1	1	0	1	
	14	1	0	0	1	1	1	1	0	
	15	1	0	0	0	1	1	1	1	

GRAY CODE - ANALYSIS

Letting $g_ng_{n-1} \dots g_1 g_0$ be the (n+1)-bit Gray code for the binary number $b_nb_{n-1} \dots b_1b_0$

	$\mathbf{g}_{i} = \mathbf{b}_{i} \oplus \mathbf{b}_{i+1}$, $0 \le i \le n-1$							
and	$\mathbf{g}_{n} = \mathbf{b}_{n}$	Reflection of Gray code						
and	$\mathbf{b}_{\mathbf{n}-\mathbf{i}} = \mathbf{g}_{\mathbf{n}} \oplus \mathbf{g}_{\mathbf{n}-1} \oplus \ldots \oplus \mathbf{g}_{\mathbf{n}-\mathbf{i}}$	<u> </u>	0 00	0 000				
	$\mathbf{p}_n = \mathbf{g}_n$	<u>1 0 1</u>	0 01	0 001				
		1 1	0 11	0 011				
		<u>1 (</u>	0 10	0 010				
			1 10	0 110				
			1 11	0 111				
			1 01	0 101				
Note:			1 00	0 100				
	and has a reflection property			1 100				
ne Gray	code has a reflection property			1 101				
- easy t	to construct a table without calculation,			1 111				
- for an	v n: reflect case n-1 about a			1 010				
mirro	s at its bottom and profix 0 and 1			1 011				
mirroi	at its bottom and prenx 0 and 1			1 001				
to top	and bottom halves, respectively			1 101				
				1 000				

Other Binary codes

CHARACTER REPRESENTATION ASCII

ASCII (American Standard Code for Information Interchange) Code

		MSB (3	3 bits)						
		0	1	2	3	4	5	6	7
LSB	0	NUL	DLE	SP	0	@	Р	"	Р
(4 bits)	1	SOH	DC1	!	1	Α	Q	а	q
(2	STX	DC2	"	2	В	R	b	r
	3	ETX	DC3	#	3	С	S	С	S
	4	EOT	DC4	\$	4	D	Т	d	t
	5	ENQ	NAK	%	5	Е	U	е	u
	6	ACK	SYN	&	6	F	V	f	V
	7	BEL	ETB	"	7	G	W	g	w
	8	BS	CAN	(8	Н	Χ	h	x
	9	НТ	EM)	9	I	Υ	I	У
	Α	LF	SUB	*	:	J	Ζ	j	z
	В	VT	ESC	+	;	Κ	[k	{
	С	FF	FS	,	<	L	١	I	I
	D	CR	GS	-	=	Μ]	m	}
	Е	SO	RS	•	>	Ν	m	n	~
	F	SI	US	1	?	0	n	ο	DEL

Data Representation

Other Binary codes

CONTROL CHARACTER REPRESENTAION (ACSII)

-			
NUL	Null	DC1	Device Control 1
SOH	Start of Heading (CC)	DC2	Device Control 2
STX	Start of Text (CC)	DC3	Device Control 3
ETX	End of Text (CC)	DC4	Device Control 4
EOT	End of Transmission (CC)	NAK	Negative Acknowledge (CC)
ENQ	Enquiry (CC)	SYN	Synchronous Idle (CC)
ACK	Acknowledge (CC)	ETB	End of Transmission Block (CC)
BEL	Bell	CAN	Cancel
BS	Backspace (FE)	EM	End of Medium
НТ	Horizontal Tab. (FE)	SUB	Substitute
LF	Line Feed (FE)	ESC	Escape
VT	Vertical Tab. (FE)	FS	File Separator (IS)
FF	Form Feed (FE)	GS	Group Separator (IS)
CR	Carriage Return (FE)	RS	Record Separator (IS)
SO	Shift Out	US	Unit Separator (IS)
SI	Shift In	DEL	Delete
DLE	Data Link Escape (CC)		
(CC) Communication Control			

(FE) Format Effector

(IS) Information Separator

Computer Organization

25

PARITY BIT GENERATION

Parity Bit Generation

For b₆b₅... b₀(7-bit information); even parity bit b_{even}

 $\mathbf{b}_{\text{even}} = \mathbf{b}_6 \oplus \mathbf{b}_5 \oplus \dots \oplus \mathbf{b}_0$

For even parity bit

 $\mathbf{b}_{odd} = \mathbf{b}_{even} \oplus \mathbf{1} = \mathbf{b}_{even}$

Error Detecting codes

PARITY GENERATOR AND PARITY CHECKER

Parity Generator Circuit(even parity)

Parity Checker

