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Introduction

• Main concepts to be taught in this chapter:

– CFG’s may be simplified to fit certain special forms, 
like Chomsky normal form and Greiback normal 
form.

– Some, but not all, properties of RL’s are also 
possessed by the CFL’s.

– Unlike the RL, many questions about the CFL 
cannot be answered. That is, there are many 
undecidable problems about CFL’s.
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Normal Forms for CFG’s 

• Concept:

In this section, we want to prove that 
every CFL(without e )can be generated by a CFG in which all 
productions are of the form ABC or Aa where A, B and C 
are Variables and a is a terminal. This form is called Chomsky 
Normal Form.

To get there we need to need to make the following 
simplifications:
– eliminating useless symbols ( which do not appear in any 

derivation from the start symbol)

– eliminating e-productions (of the form A  e)

– eliminating unit productions (of the form A  B)
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Normal Forms for CFG’s

• Eliminating Useless Symbols
– We say symbol X is useful for a grammar G = (V, T, 

P, S) if there is some derivation S * aXb * w
with wT*.

– A symbol is said to be useless if not useful.

– Omitting useless symbols obviously will not 
change the language generated by the grammar.

– Two types of usefulness:
• X is generating if X * w

• X is reachable if S * aXb
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Normal Forms for CFG’s

• Eliminating Useless Symbols

– Example 
Given the grammar

S  AB | a
A  b

• B is not generating, and is so eliminated first, resulting 
in S  a, A  b, in which A is not reachable and so
eliminated too, with S  a as the only production left.

• If we eliminate unreachable symbols first and then 
non-generating ones, we get the final result S  a, A 

b, which is not what we want!

• So, the order of eliminations is essential.
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Normal Forms of CFG’s

• Eliminating Useless Symbols
– Theorem 

Let G = (V, T, P, S) be a CFG, and assume that L(G) 
 f, i.e., assume that G generates at least one 
string. Let G1 = (V1, T1, P1, S) be the grammar 
obtained by the following steps in order:

• eliminate non-generating symbols and all 
related productions, resulting in grammar G2;

• eliminate all symbols not reachable in G2.

Then, G1 has no useless symbol and L(G1) = L(G).
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Normal Forms of CFG’s
• Computing Generating & Reachable 

Symbols
–How to compute generating symbols?

• Basis: every terminal symbol is generating.

• Induction: if every symbol in a in A  a is 
generating, then A is generating.

–How to compute reachable symbols?
• Basis: the start symbol S is reachable.

• Induction: if nonterminal A is reachable, then 
all the symbols in A  a are reachable.
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Normal Forms of CFG’s

• Eliminating e-Productions

– We want to prove that if a language L has a CFG, 
then the language L  {e} has a CFG without e-
production. 

– Two steps for the above proof:

• Find “nullable” symbols

• Transform productions into ones which generate no 
empty string using the nullable symbols

– A nonterminal A is said to be nullable if A * e.
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Normal Forms of CFG’s

• Eliminating e-Productions

– Example 

• Given a grammar with productions 

S  AB

A  aAA | e

B  bBB | e

• A, B are nullable because they derive empty strings

• S is also nullable because A, B are nullable.
(to be continued)
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Normal Forms of CFG’s

• Eliminating e-Productions

– How to find nullable symbols systematically? 

(Algorithm 1)

• Basis: If A  e is a production, then A is 

nullable.

• Induction: If all Ci in B  C1C2…Ck are nullable, 

then B is nullable, too.
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Normal Forms of CFG’s

• Construction of the grammar without ϵ-
productions:

• For each production A  X1X2…Xk, in which m
of the k Xi’s are nullable, then generate 
accordingly 2m versions of this production 
where

(1) the nullable Xi’s in all possible 
combinations are present or absent; and

(2) If m=k then do not include the case where 
all Xi’s are absent.

(3) if A  e is a production in P, eliminate it.
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Normal Forms of CFG’s

• Eliminating e-Productions
– Example (cont’d)

• For S  AB, A  aAA | e, B  bBB | e,
–We know S, A, B are nullable.
– From S  AB, we get S  AB | A | B | e where S  e

should be eliminated.
– From A  aAA, we get A  aAA | aA | aA | a where

the repeated A  aA should be removed.
– And from B  bBB, similarly we get B  bBB | bB | 

b.
–Overall result:

S  AB | A | B
A  aAA | aA | a
B  bBB | bB | b
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Normal Forms of CFG’s

• Eliminating Unit Productions

– A unit production is of the form A  B.

– Unit productions sometimes are useful.

• For example, use of unit productions E  T and 
T  F removes ambiguity in the ‘expression 
grammar,’ resulting in the following 
unambiguous grammar:

E  T | E + T
T  F | T  F
F  I | (E)
I  a | b | Ia | Ib | I0 | I1
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Normal Forms of CFG’s

• Eliminating Unit Productions

– But unit productions complicate certain proofs.

– A two-step technique to eliminate unit 

productions without changing the generated 

language:

• Find all “unit pairs”

• Expand productions using unit pairs until all 

unit productions disappear.
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Normal Forms of CFG’s

• Eliminating Unit Productions

– Definition of unit pair

• Basis: (A, A) is a unit pair for any nonterminal.

• Induction: If (A, B) is a unit pair and B  C is a 

production, then (A, C) is a unit pair.
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Normal Forms of CFG’s

• Eliminating Unit Productions

–Example --- The unit pairs for grammar 
E  T | E + T

T  F | T  F
F  I | (E)
I  a | b | Ia | Ib | I0 | I1

may be derived as follows:
unit pair (E, E) & E  T  unit pair (E, T)
unit pair (E, T) & T  F  unit pair (E, F)
unit pair (E, F) & F  I  unit pair (E, I)
unit pair (T, T) & T  F  unit pair (T, F)
unit pair (T, F) & F  I  unit pair (T, I)
unit pair (F, F) & F  I  unit pair (F, I)

Totally, there are 10 unit pairs---
the above six plus the four (E, E), (T, T), (F, F), (I, I).
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Normal Forms of CFG’s

• Eliminating Unit Productions

– How to expand productions using unit pairs until 
all unit productions disappear? :

• Given a grammar G = (V, T, P, S), we construct another 

G1 = (V, T, P1, S) as follows:

– Find all the unit pairs of G;

– For each unit pair (A, B), add to P1 all the 

productions A  a, where B  a is a non-unit

production in P.
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• Eliminating Unit Productions
– Example (continuation of Example)

• The final production set is the union of all those on the right column.

Fig. 7.1

Normal Forms of CFG’s

Unit pair Productions

(E, E) E  E + T (from E E + T)

(E, T) E  T * F (from T T * F)

(E, F) E  (E)

(E, I) E  a | b | Ia | Ib | I0 | I1

(T, T) T  T * F

(T, F) T  (E)

(T, I) T  a | b | Ia | Ib | I0 | I1

(F, F) F  (E)

(F, I) F  a | b | Ia | Ib | I0 | I1

(I, I) I  a | b | Ia | Ib | I0 | I1
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Normal Forms of CFG’s

– Perform eliminations of the following order to a 

grammar G:

• Elimination of e-productions;

• Elimination of unit productions;

• Elimination of useless symbols,

then we can get an equivalent grammar 

generating the same language except the 

empty string e. 
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Normal Forms of CFG’s

• Chomsky Normal  Form

– A grammar G is said to be in Chomsky Normal 

form, or CNF, if all its productions are in one of the 

following two simple forms:

• A  BC

• A  a

where A, B and C are nonterminals and a is a 

terminal; and further G has no useless symbol.
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Normal Forms of CFG’s

• Chomsky Normal  Form
– Transformation of a grammar into CNF:

(1) Put G into a form by eliminating e-productions, 
then unit productions and finally useless symbols;

(2) Transform it into the two production forms of CNF.

– Steps to achieve the 2nd goal above:
(a) Arrange all production bodies of length 2 or more 

to consist only of nonterminals
(b) Break production bodies of length 3 or more into 

a cascade of productions, each with a body 
consisting of 2 nonterminals.
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Normal Forms of CFG’s

• Chomsky Normal  Form

– For goal (a) above:

• For every terminal a, create a new nonterminal, 
say A. (Now, every production has a body of a 
single terminal or at least 2 nonterminals & no 
terminal.)

– For goal (b) above:

• Break production A  B1B2…Bk, k  3, into a 
group of productions with 2 nonterminals in 
each body as follows:  A  B1C1, C1  B2C2, …, 

Ck3  Bk2Ck2, Ck2  Bk1Bk
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Normal Forms of CFG’s
• Chomsky Normal  Form

– Example --- Conversion of the expression grammar into CNF.

E  T | E + T
T  F | T  F
F  I | (E)
I  a | b | Ia | Ib | I0 | I1

(1) create new nonterminals for the terminals to produce the following 
productions:

A  a B  b Z  0          O  1
P  + M  * L  (           R  )

(2)  E  E + T | T * F | (E) | a | b | Ia | Ib | I0 | I1 
 E  EPT | TMF | LER | a | b | IA | IB | IZ | IO

T  ...
F  ...
I  ...

 E  EC1, C1  PT, ...
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Pumping Lemma for CFL’s
• The Size of Parse Trees

Theorem:

Suppose we have a parse tree according to a CNF 
grammar G=(V,T,P,S), and suppose that the yield of the tree is a 
terminal string w. If the length of the longest path is n, then 
|w|<=2n-1 .

Basis: n=1. It results in a tree with a maximum path length of 1.

It consists of only a root and one leaf labeled by a terminal.

|w|=1 since 2n-1 =1

Induction: Let n>1 .Since n>1 the tree starts with the production 
A->BC. No path in the subtrees rooted at B and C can have 
greater than n-1. The subtrees have yield of length 2n-2 . The 
yield of the entire tree is 2n-2 + 2n-2 = 2n-1 .



Pumping Lemma for CFLs

– Statement of the Pumping Lemma

– Theorem (pumping lemma for CFL’s)

Let L be a CFL. There exists an integer constant n
such that if zL with |z|  n, then we can write z = 
uvwxy, subject to the following conditions:

1. |vwx|  n;

2. vx  e (that is, v, x are not both e);

3. for all i  0, uviwxiyL.



Proof
Our first step is to find a Chomsky-Normal-Form grammar G
for L. Technically, we cannot find such a grammar if L is the
CFL ø or {ϵ}.

However, if L == ø then the statement of the theorem, which
talks about a string z in L surely cannot be violated, since
there is no such z in 0.

AIso, the CNF grammar G will actually generate L-{ϵ}, but that
is again not of importance, since we shall surely pick n > 0, in
which case z cannot be ϵ anyway.



Proof
Starting with a CNF grammar G= (V,T,P,S) such that L(G) = L-{ϵ}, let G
have m variables. Choose n = 2m.

Next, suppose that z in L is of length at least n. By the previous theorem,
any parse tree whose longest path is of length m or less must have a
yield of length 2m-1 = n/2 or less.

Such a parse tree cannot have yield z, because z is too long. Thus, any
parse tree with yield z has a path of length at least m + 1.

Let k+1 be the longest path in the tree where k is at least m. Since k >=m
there are at least m+1 occurrences of variables.

As there are only m different variables in V, at least two of the last m + 1
variables on the path must be the same variable. Suppose Ai = Aj, where
k-m<= i < J <= k.

The tree is divided into three parts.



Proof



Proof

String w is the yield of the subtree rooted at Aj. 

There are no unit productions so v and x both 
can not be ϵ.

The strings v and x can be pumped any number 
of times resulting in uviwxiy

Since k-i<=m the longest path rooted at Ai is no 
greater than m+1 and its yield is no greater than 
2m=n. Therefore |vwx|<=n.



Applications of Pumping Lemma

1. We pick a language L that we want to show is not 
a CFL.
2. Our “adversary” gets to pick n, which we do not 
know, and we therefore must plan for any possible 
n.
3. We get to pick z, and may use n as a parameter 
when we do so.
4. Our adversary gets to break z into uvwxy, subject 
only to the constraints that |vwx|<=n and vx!=ϵ
5. If we can pick i and show that uvi wxiy is not in L 
then L is not CFL
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Pumping Lemma for CFL’s

• Applications of Pumping Lemma
– Example 

Prove by contradiction the language L = {0n1n2n | n
 1} is not a CFL by the pumping lemma.

Proof.

• Suppose L is a CFL. Then there exists an integer n
as given by the lemma.

• Pick z = 0n1n2n with |z| = 3nn, which can be 
written as z = uvwxy where

(1) |vwx|  n;

(2) v, x are not both e; and 

(3) the pumping is true.
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Pumping Lemma for CFL’s

• Applications of Pumping Lemma
– Example 

Proof (cont’d).

• By (1), vwx cannot include both 0 and 2 because 
there are n 1’s in between. This can be 
elaborated by two cases:

(a) vwx has no 2;

(b) vwx has no 0.

• The two cases are discussed as follows.
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Pumping Lemma for CFL’s

• Applications of Pumping Lemma

– Example (cont’d)

• (a) vwx has no 2 ---

–Then v and x consists only 0’s and 1’s. Now 

‘pump’ up z' = uv0wx0y = uwy which, as said by 

the lemma, is in L.

– It is not possible because the resulting string 

uwy has n 2’s but fewer number of 0’s or 1’s .
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Pumping Lemma for CFL’s

• Applications of Pumping Lemma

– Example (cont’d)

• (b) vwx has no 0 ---

–By symmetry, we can draw the same 

conclusion as in (a).

–Since no other case exists, we conclude by 

contradiction that L is not a CFL.
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Closure Properties of CFL’s

• Some differences of CFL’s from RL’s:

–CFL’s are not closed under intersection, 

difference, or complementation

–But the intersection or difference of a CFL 

and an RL is still a CFL.

–We will introduce a new operation ---

substitution.
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Closure Properties of CFL’s

• Substitution
– Definitions:

• A substitution s on an alphabet S is a function 
such that for each aS, s(a) is a language La

over any alphabet (not necessarily S).

• For a string w  a1a2…an  S*, s(w) = 

s(a1)s(a2)…s(an) = La1La2…Lan, i.e., s(w) is a 

language which is the concatenation of all Lai’s.

• Given a language L, s(L) = ∪wLs(w).
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Closure Properties of CFL’s

Substitution
– Example

• A substitution s on an alphabet S = {0, 1} is 
defined as S(0) = {anbn | n  1}, s(1) = {aa, bb}.

• Let w = 01, then s(w)  s(0)s(1)  {anbn | n 
1}{aa, bb} = {anbnaa | n 1}∪{anbn+2 | n 1}.

• Let L = L(0*), then s(L) = ∪k=0, 1, …s(0k)

= (s(0))* (provable)  ({anbn | n  1})*

= {e}∪{anbn | n  1}∪{anbn | n  1}2∪…

• S(L) includes strings like aabbaaabbb, 
abaabbabab,…
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Closure Properties of CFL’s

• Substitution

– Theorem 

If L is a CFL over alphabet S, and s is a substitution 

on S such that s(a) is a CFL for each a in S, then 

s(L) is a CFL.
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Closure Properties of CFL’s

• Applications of Substitution Theorem

– Theorem 

The CFL’s are closed under the following 
operations:

1. Union.

2. Concatenation.

3. Closure (*), and positive closure (+).

4. Homomorphism.



Closure Properties of CFL

• Union: Let L1 and L2 be CFL's. Then L1 U L2 is
the language s(L), where L is the language {1,
2}, and s is the substitution defined by s(1) =L1
and s(2) = L2.

• Concatenation: Again let L1 and L2 be CFL's.
Then L1L2 is the language s(L), where L is the
language {12}, and s is the same substitution
as in union.



Closure Properties of CFL

• Closure and positive closure: If L1 is a CFL, L is the
language {1}*and s is the substitution s(1) = Ll

then L1 *= s(L). Similarly, if L is instead the
language {1}+, then L+ = s(L).

• Homomorphism : Suppose L is a CFL over
alphabet ∑, and h is a homomorphism on ∑. Let s
be the substitution that replaces each symbol a in
∑ by the language consisting of the one string
that is h(a). That is, s(a) = {h(a)}, for all a in ∑.
Then h(L) = s(L).
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Closure Properties of CFL’s

• Reversal

– Theorem 

If L is a CFL, so is LR.

• Intersection with an RL

– The CFL is not closed under intersection.



Reversal

• Let L = L(G) for some CFL G = (V, T,P, S).
Construct GR = (V,T, PR, S), where PR is the
"reverse" of each production in P. That is, if
Aα is a production of G, then A αR is a
production of GR. It is an easy induction on the
lengths of derivations in G and GR to show
that L(GR) = L(R). All the sentential forms of GR
are reverses of sentential forms of G.
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Closure Properties of CFL’s

– The CFL is not closed under intersection.

– Example

• L = {0n1n2n | n  1} is not CFL L1 = {0n1n2i | n  1, i  1} & L2

= {0i1n2n | n  1, i  1} are CFL’s.

• A grammar for L1 is: S  AB, A  0A1 | 01, B  2B | 2.

• A grammar for L2 is: S  AB, A  0A | 0, B  1B2 | 12.

• It is easy to see that L1∩L2  L because L1 requires same
number of 0s and 12 and L2 requires same number of 1s
and 2s which means L must have equal number of 0s, 1s
and 2s.

• This shows that intersection of two CFL’s L1 and L2 yields a
non-CFL L.

• So CFL’s are not closed under intersection.
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Closure Properties of CFL’s

• Intersection with an RL

– Theorem 

If L is a CFL and R is an RL, then L∩R is a 
CFL.
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Closure Properties of CFL’s

• Intersection with an RL

– Theorem 

The following are true about CFL’s L, L1, and 
L2, and an RL R:

1. L  R is a CFL;

2.   ¯L   is not necessarily a CFL;

3. L1  L2 is not necessarily a CFL.
L



Intersection with a RL



Intersection with a RL



Intersection with a RL
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Closure Properties of CFL’s

• Inverse Homomorphism

– Theorem 

Let L be a CFL and h a homomorphism. 
Then h1(L) is a CFL. 
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Decision Properties of CFL’s

• Facts:

– Unlike RLs’ decision problems which are all 
solvable, very little can be said about CFL’s.

– Only two problems can be decided for CFL’s:

• Whether the language is empty.

• Whether a given string is in the language.

–Computational complexity for conversions 
between CFG’s and PDF’s will be 
investigated.



53

Decision Properties of CFL’s

• Complexity of Converting among CFG’s and PDA’s

– Assume:

• n = length of representation of a PDA or a CFG

– The following are conversions of O(n) time (linear 
time):

• CFG  PDA (by algorithm of Theorem )

• PDA by final state  PDA by empty stack (by 
construction of Theorem )

• PDA by empty stack  PDA by final state (by 
construction of Theorem)
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Decision Properties of CFL’s

• Complexity of Converting among CFG’s and 
PDA’s

–Conversion from PDA’s to CFG’s is not linear.

– There is an O(n3) algorithm that takes a PDA P of
length n and produces an equivalent CFG of length

at most O(n3).This CFG generates the same
language as P accepts by empty stack.
Optionally we can cause G to generate the
language that P accepts by final state.
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Decision Properties of CFL’s

• Running Time of Conversion to Chomsky Normal Form

1) Detecting reachable and generating symbols of a 
grammar ---- O(n)

2) Construction of unit pairs and elimination of unit 
pairs------O(n2)

3) Replacement of terminals by variables in production 
bodies --------------O(n)

4) The breaking of production bodies of length 3 or 
more into bodies of length 2 ------------------- O(n)



Decision Properties of CFL’s

Given a grammar G of length n, we can find an 
equivalent CNF grammar for G in time O(n2); the 
resulting grammar has length O(n2).
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Decision Properties of CFL’s

• Testing Emptiness of CFL’s

– The problem of testing emptiness of a CFL L is 

decidable.

• decide if the start symbol of the grammar G for 

L is “generating”; if not, then L is empty.
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Decision Properties of CFL’s

• Testing Membership in a CFL

– A way for solving the membership problem for a CFL L

is to use the CNF of the CFG G for L:

• The parse tree of an input string w of length n

using the CNF grammar G has 2n  1 nodes labelled 

by variables in that tree. We can generate all 

possible parse trees and check if a yield of them is 

w.

• The number of such trees is exponential in n.
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Decision Properties of CFL’s

• Testing Membership in a CFL

– A refined way is to use the CYK algorithm which 

takes time O(n3). 

• That is, we use the CYK algorithm to check if a 

given string wL in O(n3) time, assuming the 

size of the grammar is constant. 
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Decision Properties of CFL’s

• Testing Membership in a CFL

– CYK (Cocke, Younger, Kasami) Algorithm ---

• A table-filling algorithm (“tabulation”) based on 

the principle of dynamic programming

• Input: grammar G in CNF & string w = a1a2…an

• The table entry Xij is the set of non-terminals A 

such that A * aiai+1….aj.

• If start symbol S is in X1n, then S * a1a2….an

which means that w is generated by the start 

symbol S and so has answered the problem.
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Decision Properties of CFL’s

• Testing Membership in a CFL

– CYK (Cocke, Younger, Kasami) Algorithm ---

• To fill the table like the one as follows (for n=5), 
start from the bottom row and work upward 
row-by-row (for details, see the next page).

X15

X14 X25

X13 X24 X35

X12 X23 X34 X45

X11 X22 X33 X44 X55

a1 a2 a3 a4 a5
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Decision Properties of CFL’s

• Testing Membership in a CFL
– CYK (Cocke, Younger, Kasami) Algorithm ---

• Basis: for the lowest row,

set Xii = {A | A  ai is a production of G}

• Induction: for a nonterminal A to be in Xij, try to find non-
terminals B and C, and integer k such that

1. i  k < j.

2. B is in Xik.

3. C is in Xk+1, j.

4. A  BC is a production of G.

• That is, to find A, we have to compute at most n pairs of 
previously computed sets: (Xii, Xi+1,j), (Xi,i+1, Xi+2,j), …, (Xi,j1, 
Xjj).
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Decision Properties of CFL’s

• Testing Membership in a CFL
– CYK (Cocke, Younger, Kasami) Algorithm ---

• For example, to compute Xij = X25, we have to check the 
pairs of (X22, X35), (X23, X45), (X24, X55).

• See Fig. for the pattern of this pair computation.

X15

X14 X25

X13 X24 X35

X12 X23 X34 X45

X11 X22 X33 X44 X55

a1 a2 a3 a4 a5
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Decision Properties of CFL’s

• Testing Membership in a CFL
– Example 

• Given a grammar G with productions:
S  AB | BC A  BA | a

B  CC | b C  AB | a

• We want to test if w  baaba is generated by G.

• Since S is in X15, so we decide that w is generated by G.

{S, A, C}

- {S, A, C}

- {B} {B}

{S, A} {B} {S, C} {S, A} 

{B} {A, C} {A, C} {B} {A, C}

b a a b a
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Decision Properties of CFL’s

• Preview of Undecidable CFL Problems

– The following are undecidable CFL problems:

• Is a given CFG G ambiguous?

• Is a given CFL inherently ambiguous?

• Is the intersection of two CFL’s empty?

• Are two CFL’s the same?

• Is a given CFL equal to S*, where S is the 
alphabet of this language? 


