
Properties of Context-Free
Languages

Unit-IV

2

Outline

Introduction

Normal Forms for CFG’s

The Pumping Lemma for CFL’s

Closure Properties of CFL’s

Decision Properties of CFL’s

3

Introduction

• Main concepts to be taught in this chapter:

– CFG’s may be simplified to fit certain special forms,
like Chomsky normal form and Greiback normal
form.

– Some, but not all, properties of RL’s are also
possessed by the CFL’s.

– Unlike the RL, many questions about the CFL
cannot be answered. That is, there are many
undecidable problems about CFL’s.

4

Normal Forms for CFG’s

• Concept:

In this section, we want to prove that
every CFL(without e)can be generated by a CFG in which all
productions are of the form ABC or Aa where A, B and C
are Variables and a is a terminal. This form is called Chomsky
Normal Form.

To get there we need to need to make the following
simplifications:
– eliminating useless symbols (which do not appear in any

derivation from the start symbol)

– eliminating e-productions (of the form A  e)

– eliminating unit productions (of the form A  B)

5

Normal Forms for CFG’s

• Eliminating Useless Symbols
– We say symbol X is useful for a grammar G = (V, T,

P, S) if there is some derivation S * aXb * w
with wT*.

– A symbol is said to be useless if not useful.

– Omitting useless symbols obviously will not
change the language generated by the grammar.

– Two types of usefulness:
• X is generating if X * w

• X is reachable if S * aXb

6

Normal Forms for CFG’s

• Eliminating Useless Symbols

– Example
Given the grammar

S  AB | a
A  b

• B is not generating, and is so eliminated first, resulting
in S  a, A  b, in which A is not reachable and so
eliminated too, with S  a as the only production left.

• If we eliminate unreachable symbols first and then
non-generating ones, we get the final result S  a, A 

b, which is not what we want!

• So, the order of eliminations is essential.

7

Normal Forms of CFG’s

• Eliminating Useless Symbols
– Theorem

Let G = (V, T, P, S) be a CFG, and assume that L(G)
 f, i.e., assume that G generates at least one
string. Let G1 = (V1, T1, P1, S) be the grammar
obtained by the following steps in order:

• eliminate non-generating symbols and all
related productions, resulting in grammar G2;

• eliminate all symbols not reachable in G2.

Then, G1 has no useless symbol and L(G1) = L(G).

8

Normal Forms of CFG’s
• Computing Generating & Reachable

Symbols
–How to compute generating symbols?

• Basis: every terminal symbol is generating.

• Induction: if every symbol in a in A  a is
generating, then A is generating.

–How to compute reachable symbols?
• Basis: the start symbol S is reachable.

• Induction: if nonterminal A is reachable, then
all the symbols in A  a are reachable.

9

Normal Forms of CFG’s

• Eliminating e-Productions

– We want to prove that if a language L has a CFG,
then the language L  {e} has a CFG without e-
production.

– Two steps for the above proof:

• Find “nullable” symbols

• Transform productions into ones which generate no
empty string using the nullable symbols

– A nonterminal A is said to be nullable if A * e.

10

Normal Forms of CFG’s

• Eliminating e-Productions

– Example

• Given a grammar with productions

S  AB

A  aAA | e

B  bBB | e

• A, B are nullable because they derive empty strings

• S is also nullable because A, B are nullable.
(to be continued)

11

Normal Forms of CFG’s

• Eliminating e-Productions

– How to find nullable symbols systematically?

(Algorithm 1)

• Basis: If A  e is a production, then A is

nullable.

• Induction: If all Ci in B  C1C2…Ck are nullable,

then B is nullable, too.

12

Normal Forms of CFG’s

• Construction of the grammar without ϵ-
productions:

• For each production A  X1X2…Xk, in which m
of the k Xi’s are nullable, then generate
accordingly 2m versions of this production
where

(1) the nullable Xi’s in all possible
combinations are present or absent; and

(2) If m=k then do not include the case where
all Xi’s are absent.

(3) if A  e is a production in P, eliminate it.

13

Normal Forms of CFG’s

• Eliminating e-Productions
– Example (cont’d)

• For S  AB, A  aAA | e, B  bBB | e,
–We know S, A, B are nullable.
– From S  AB, we get S  AB | A | B | e where S  e

should be eliminated.
– From A  aAA, we get A  aAA | aA | aA | a where

the repeated A  aA should be removed.
– And from B  bBB, similarly we get B  bBB | bB |

b.
–Overall result:

S  AB | A | B
A  aAA | aA | a
B  bBB | bB | b

14

Normal Forms of CFG’s

• Eliminating Unit Productions

– A unit production is of the form A  B.

– Unit productions sometimes are useful.

• For example, use of unit productions E  T and
T  F removes ambiguity in the ‘expression
grammar,’ resulting in the following
unambiguous grammar:

E  T | E + T
T  F | T  F
F  I | (E)
I  a | b | Ia | Ib | I0 | I1

15

Normal Forms of CFG’s

• Eliminating Unit Productions

– But unit productions complicate certain proofs.

– A two-step technique to eliminate unit

productions without changing the generated

language:

• Find all “unit pairs”

• Expand productions using unit pairs until all

unit productions disappear.

16

Normal Forms of CFG’s

• Eliminating Unit Productions

– Definition of unit pair

• Basis: (A, A) is a unit pair for any nonterminal.

• Induction: If (A, B) is a unit pair and B  C is a

production, then (A, C) is a unit pair.

17

Normal Forms of CFG’s

• Eliminating Unit Productions

–Example --- The unit pairs for grammar
E  T | E + T

T  F | T  F
F  I | (E)
I  a | b | Ia | Ib | I0 | I1

may be derived as follows:
unit pair (E, E) & E  T  unit pair (E, T)
unit pair (E, T) & T  F  unit pair (E, F)
unit pair (E, F) & F  I  unit pair (E, I)
unit pair (T, T) & T  F  unit pair (T, F)
unit pair (T, F) & F  I  unit pair (T, I)
unit pair (F, F) & F  I  unit pair (F, I)

Totally, there are 10 unit pairs---
the above six plus the four (E, E), (T, T), (F, F), (I, I).

18

Normal Forms of CFG’s

• Eliminating Unit Productions

– How to expand productions using unit pairs until
all unit productions disappear? :

• Given a grammar G = (V, T, P, S), we construct another

G1 = (V, T, P1, S) as follows:

– Find all the unit pairs of G;

– For each unit pair (A, B), add to P1 all the

productions A  a, where B  a is a non-unit

production in P.

19

• Eliminating Unit Productions
– Example (continuation of Example)

• The final production set is the union of all those on the right column.

Fig. 7.1

Normal Forms of CFG’s

Unit pair Productions

(E, E) E  E + T (from E E + T)

(E, T) E  T * F (from T T * F)

(E, F) E  (E)

(E, I) E  a | b | Ia | Ib | I0 | I1

(T, T) T  T * F

(T, F) T  (E)

(T, I) T  a | b | Ia | Ib | I0 | I1

(F, F) F  (E)

(F, I) F  a | b | Ia | Ib | I0 | I1

(I, I) I  a | b | Ia | Ib | I0 | I1

20

Normal Forms of CFG’s

– Perform eliminations of the following order to a

grammar G:

• Elimination of e-productions;

• Elimination of unit productions;

• Elimination of useless symbols,

then we can get an equivalent grammar

generating the same language except the

empty string e.

21

Normal Forms of CFG’s

• Chomsky Normal Form

– A grammar G is said to be in Chomsky Normal

form, or CNF, if all its productions are in one of the

following two simple forms:

• A  BC

• A  a

where A, B and C are nonterminals and a is a

terminal; and further G has no useless symbol.

22

Normal Forms of CFG’s

• Chomsky Normal Form
– Transformation of a grammar into CNF:

(1) Put G into a form by eliminating e-productions,
then unit productions and finally useless symbols;

(2) Transform it into the two production forms of CNF.

– Steps to achieve the 2nd goal above:
(a) Arrange all production bodies of length 2 or more

to consist only of nonterminals
(b) Break production bodies of length 3 or more into

a cascade of productions, each with a body
consisting of 2 nonterminals.

23

Normal Forms of CFG’s

• Chomsky Normal Form

– For goal (a) above:

• For every terminal a, create a new nonterminal,
say A. (Now, every production has a body of a
single terminal or at least 2 nonterminals & no
terminal.)

– For goal (b) above:

• Break production A  B1B2…Bk, k  3, into a
group of productions with 2 nonterminals in
each body as follows: A  B1C1, C1  B2C2, …,

Ck3  Bk2Ck2, Ck2  Bk1Bk

24

Normal Forms of CFG’s
• Chomsky Normal Form

– Example --- Conversion of the expression grammar into CNF.

E  T | E + T
T  F | T  F
F  I | (E)
I  a | b | Ia | Ib | I0 | I1

(1) create new nonterminals for the terminals to produce the following
productions:

A  a B  b Z  0 O  1
P  + M  * L  (R )

(2) E  E + T | T * F | (E) | a | b | Ia | Ib | I0 | I1
 E  EPT | TMF | LER | a | b | IA | IB | IZ | IO

T  ...
F  ...
I  ...

 E  EC1, C1  PT, ...

25

Pumping Lemma for CFL’s
• The Size of Parse Trees

Theorem:

Suppose we have a parse tree according to a CNF
grammar G=(V,T,P,S), and suppose that the yield of the tree is a
terminal string w. If the length of the longest path is n, then
|w|<=2n-1 .

Basis: n=1. It results in a tree with a maximum path length of 1.

It consists of only a root and one leaf labeled by a terminal.

|w|=1 since 2n-1 =1

Induction: Let n>1 .Since n>1 the tree starts with the production
A->BC. No path in the subtrees rooted at B and C can have
greater than n-1. The subtrees have yield of length 2n-2 . The
yield of the entire tree is 2n-2 + 2n-2 = 2n-1 .

Pumping Lemma for CFLs

– Statement of the Pumping Lemma

– Theorem (pumping lemma for CFL’s)

Let L be a CFL. There exists an integer constant n
such that if zL with |z|  n, then we can write z =
uvwxy, subject to the following conditions:

1. |vwx|  n;

2. vx  e (that is, v, x are not both e);

3. for all i  0, uviwxiyL.

Proof
Our first step is to find a Chomsky-Normal-Form grammar G
for L. Technically, we cannot find such a grammar if L is the
CFL ø or {ϵ}.

However, if L == ø then the statement of the theorem, which
talks about a string z in L surely cannot be violated, since
there is no such z in 0.

AIso, the CNF grammar G will actually generate L-{ϵ}, but that
is again not of importance, since we shall surely pick n > 0, in
which case z cannot be ϵ anyway.

Proof
Starting with a CNF grammar G= (V,T,P,S) such that L(G) = L-{ϵ}, let G
have m variables. Choose n = 2m.

Next, suppose that z in L is of length at least n. By the previous theorem,
any parse tree whose longest path is of length m or less must have a
yield of length 2m-1 = n/2 or less.

Such a parse tree cannot have yield z, because z is too long. Thus, any
parse tree with yield z has a path of length at least m + 1.

Let k+1 be the longest path in the tree where k is at least m. Since k >=m
there are at least m+1 occurrences of variables.

As there are only m different variables in V, at least two of the last m + 1
variables on the path must be the same variable. Suppose Ai = Aj, where
k-m<= i < J <= k.

The tree is divided into three parts.

Proof

Proof

String w is the yield of the subtree rooted at Aj.

There are no unit productions so v and x both
can not be ϵ.

The strings v and x can be pumped any number
of times resulting in uviwxiy

Since k-i<=m the longest path rooted at Ai is no
greater than m+1 and its yield is no greater than
2m=n. Therefore |vwx|<=n.

Applications of Pumping Lemma

1. We pick a language L that we want to show is not
a CFL.
2. Our “adversary” gets to pick n, which we do not
know, and we therefore must plan for any possible
n.
3. We get to pick z, and may use n as a parameter
when we do so.
4. Our adversary gets to break z into uvwxy, subject
only to the constraints that |vwx|<=n and vx!=ϵ
5. If we can pick i and show that uvi wxiy is not in L
then L is not CFL

32

Pumping Lemma for CFL’s

• Applications of Pumping Lemma
– Example

Prove by contradiction the language L = {0n1n2n | n
 1} is not a CFL by the pumping lemma.

Proof.

• Suppose L is a CFL. Then there exists an integer n
as given by the lemma.

• Pick z = 0n1n2n with |z| = 3nn, which can be
written as z = uvwxy where

(1) |vwx|  n;

(2) v, x are not both e; and

(3) the pumping is true.

33

Pumping Lemma for CFL’s

• Applications of Pumping Lemma
– Example

Proof (cont’d).

• By (1), vwx cannot include both 0 and 2 because
there are n 1’s in between. This can be
elaborated by two cases:

(a) vwx has no 2;

(b) vwx has no 0.

• The two cases are discussed as follows.

34

Pumping Lemma for CFL’s

• Applications of Pumping Lemma

– Example (cont’d)

• (a) vwx has no 2 ---

–Then v and x consists only 0’s and 1’s. Now

‘pump’ up z' = uv0wx0y = uwy which, as said by

the lemma, is in L.

– It is not possible because the resulting string

uwy has n 2’s but fewer number of 0’s or 1’s .

35

Pumping Lemma for CFL’s

• Applications of Pumping Lemma

– Example (cont’d)

• (b) vwx has no 0 ---

–By symmetry, we can draw the same

conclusion as in (a).

–Since no other case exists, we conclude by

contradiction that L is not a CFL.

36

Closure Properties of CFL’s

• Some differences of CFL’s from RL’s:

–CFL’s are not closed under intersection,

difference, or complementation

–But the intersection or difference of a CFL

and an RL is still a CFL.

–We will introduce a new operation ---

substitution.

37

Closure Properties of CFL’s

• Substitution
– Definitions:

• A substitution s on an alphabet S is a function
such that for each aS, s(a) is a language La

over any alphabet (not necessarily S).

• For a string w  a1a2…an  S*, s(w) =

s(a1)s(a2)…s(an) = La1La2…Lan, i.e., s(w) is a

language which is the concatenation of all Lai’s.

• Given a language L, s(L) = ∪wLs(w).

38

Closure Properties of CFL’s

Substitution
– Example

• A substitution s on an alphabet S = {0, 1} is
defined as S(0) = {anbn | n  1}, s(1) = {aa, bb}.

• Let w = 01, then s(w)  s(0)s(1)  {anbn | n 
1}{aa, bb} = {anbnaa | n 1}∪{anbn+2 | n 1}.

• Let L = L(0*), then s(L) = ∪k=0, 1, …s(0k)

= (s(0))* (provable)  ({anbn | n  1})*

= {e}∪{anbn | n  1}∪{anbn | n  1}2∪…

• S(L) includes strings like aabbaaabbb,
abaabbabab,…

39

Closure Properties of CFL’s

• Substitution

– Theorem

If L is a CFL over alphabet S, and s is a substitution

on S such that s(a) is a CFL for each a in S, then

s(L) is a CFL.

40

Closure Properties of CFL’s

• Applications of Substitution Theorem

– Theorem

The CFL’s are closed under the following
operations:

1. Union.

2. Concatenation.

3. Closure (*), and positive closure (+).

4. Homomorphism.

Closure Properties of CFL

• Union: Let L1 and L2 be CFL's. Then L1 U L2 is
the language s(L), where L is the language {1,
2}, and s is the substitution defined by s(1) =L1
and s(2) = L2.

• Concatenation: Again let L1 and L2 be CFL's.
Then L1L2 is the language s(L), where L is the
language {12}, and s is the same substitution
as in union.

Closure Properties of CFL

• Closure and positive closure: If L1 is a CFL, L is the
language {1}*and s is the substitution s(1) = Ll

then L1 *= s(L). Similarly, if L is instead the
language {1}+, then L+ = s(L).

• Homomorphism : Suppose L is a CFL over
alphabet ∑, and h is a homomorphism on ∑. Let s
be the substitution that replaces each symbol a in
∑ by the language consisting of the one string
that is h(a). That is, s(a) = {h(a)}, for all a in ∑.
Then h(L) = s(L).

43

Closure Properties of CFL’s

• Reversal

– Theorem

If L is a CFL, so is LR.

• Intersection with an RL

– The CFL is not closed under intersection.

Reversal

• Let L = L(G) for some CFL G = (V, T,P, S).
Construct GR = (V,T, PR, S), where PR is the
"reverse" of each production in P. That is, if
Aα is a production of G, then A αR is a
production of GR. It is an easy induction on the
lengths of derivations in G and GR to show
that L(GR) = L(R). All the sentential forms of GR
are reverses of sentential forms of G.

45

Closure Properties of CFL’s

– The CFL is not closed under intersection.

– Example

• L = {0n1n2n | n  1} is not CFL L1 = {0n1n2i | n  1, i  1} & L2

= {0i1n2n | n  1, i  1} are CFL’s.

• A grammar for L1 is: S  AB, A  0A1 | 01, B  2B | 2.

• A grammar for L2 is: S  AB, A  0A | 0, B  1B2 | 12.

• It is easy to see that L1∩L2  L because L1 requires same
number of 0s and 12 and L2 requires same number of 1s
and 2s which means L must have equal number of 0s, 1s
and 2s.

• This shows that intersection of two CFL’s L1 and L2 yields a
non-CFL L.

• So CFL’s are not closed under intersection.

46

Closure Properties of CFL’s

• Intersection with an RL

– Theorem

If L is a CFL and R is an RL, then L∩R is a
CFL.

47

Closure Properties of CFL’s

• Intersection with an RL

– Theorem

The following are true about CFL’s L, L1, and
L2, and an RL R:

1. L  R is a CFL;

2. ¯L is not necessarily a CFL;

3. L1  L2 is not necessarily a CFL.
L

Intersection with a RL

Intersection with a RL

Intersection with a RL

51

Closure Properties of CFL’s

• Inverse Homomorphism

– Theorem

Let L be a CFL and h a homomorphism.
Then h1(L) is a CFL.

52

Decision Properties of CFL’s

• Facts:

– Unlike RLs’ decision problems which are all
solvable, very little can be said about CFL’s.

– Only two problems can be decided for CFL’s:

• Whether the language is empty.

• Whether a given string is in the language.

–Computational complexity for conversions
between CFG’s and PDF’s will be
investigated.

53

Decision Properties of CFL’s

• Complexity of Converting among CFG’s and PDA’s

– Assume:

• n = length of representation of a PDA or a CFG

– The following are conversions of O(n) time (linear
time):

• CFG  PDA (by algorithm of Theorem)

• PDA by final state  PDA by empty stack (by
construction of Theorem)

• PDA by empty stack  PDA by final state (by
construction of Theorem)

54

Decision Properties of CFL’s

• Complexity of Converting among CFG’s and
PDA’s

–Conversion from PDA’s to CFG’s is not linear.

– There is an O(n3) algorithm that takes a PDA P of
length n and produces an equivalent CFG of length

at most O(n3).This CFG generates the same
language as P accepts by empty stack.
Optionally we can cause G to generate the
language that P accepts by final state.

55

Decision Properties of CFL’s

• Running Time of Conversion to Chomsky Normal Form

1) Detecting reachable and generating symbols of a
grammar ---- O(n)

2) Construction of unit pairs and elimination of unit
pairs------O(n2)

3) Replacement of terminals by variables in production
bodies --------------O(n)

4) The breaking of production bodies of length 3 or
more into bodies of length 2 ------------------- O(n)

Decision Properties of CFL’s

Given a grammar G of length n, we can find an
equivalent CNF grammar for G in time O(n2); the
resulting grammar has length O(n2).

57

Decision Properties of CFL’s

• Testing Emptiness of CFL’s

– The problem of testing emptiness of a CFL L is

decidable.

• decide if the start symbol of the grammar G for

L is “generating”; if not, then L is empty.

58

Decision Properties of CFL’s

• Testing Membership in a CFL

– A way for solving the membership problem for a CFL L

is to use the CNF of the CFG G for L:

• The parse tree of an input string w of length n

using the CNF grammar G has 2n  1 nodes labelled

by variables in that tree. We can generate all

possible parse trees and check if a yield of them is

w.

• The number of such trees is exponential in n.

59

Decision Properties of CFL’s

• Testing Membership in a CFL

– A refined way is to use the CYK algorithm which

takes time O(n3).

• That is, we use the CYK algorithm to check if a

given string wL in O(n3) time, assuming the

size of the grammar is constant.

60

Decision Properties of CFL’s

• Testing Membership in a CFL

– CYK (Cocke, Younger, Kasami) Algorithm ---

• A table-filling algorithm (“tabulation”) based on

the principle of dynamic programming

• Input: grammar G in CNF & string w = a1a2…an

• The table entry Xij is the set of non-terminals A

such that A * aiai+1….aj.

• If start symbol S is in X1n, then S * a1a2….an

which means that w is generated by the start

symbol S and so has answered the problem.

61

Decision Properties of CFL’s

• Testing Membership in a CFL

– CYK (Cocke, Younger, Kasami) Algorithm ---

• To fill the table like the one as follows (for n=5),
start from the bottom row and work upward
row-by-row (for details, see the next page).

X15

X14 X25

X13 X24 X35

X12 X23 X34 X45

X11 X22 X33 X44 X55

a1 a2 a3 a4 a5

62

Decision Properties of CFL’s

• Testing Membership in a CFL
– CYK (Cocke, Younger, Kasami) Algorithm ---

• Basis: for the lowest row,

set Xii = {A | A  ai is a production of G}

• Induction: for a nonterminal A to be in Xij, try to find non-
terminals B and C, and integer k such that

1. i  k < j.

2. B is in Xik.

3. C is in Xk+1, j.

4. A  BC is a production of G.

• That is, to find A, we have to compute at most n pairs of
previously computed sets: (Xii, Xi+1,j), (Xi,i+1, Xi+2,j), …, (Xi,j1,
Xjj).

63

Decision Properties of CFL’s

• Testing Membership in a CFL
– CYK (Cocke, Younger, Kasami) Algorithm ---

• For example, to compute Xij = X25, we have to check the
pairs of (X22, X35), (X23, X45), (X24, X55).

• See Fig. for the pattern of this pair computation.

X15

X14 X25

X13 X24 X35

X12 X23 X34 X45

X11 X22 X33 X44 X55

a1 a2 a3 a4 a5

64

Decision Properties of CFL’s

• Testing Membership in a CFL
– Example

• Given a grammar G with productions:
S  AB | BC A  BA | a

B  CC | b C  AB | a

• We want to test if w  baaba is generated by G.

• Since S is in X15, so we decide that w is generated by G.

{S, A, C}

- {S, A, C}

- {B} {B}

{S, A} {B} {S, C} {S, A}

{B} {A, C} {A, C} {B} {A, C}

b a a b a

65

Decision Properties of CFL’s

• Preview of Undecidable CFL Problems

– The following are undecidable CFL problems:

• Is a given CFG G ambiguous?

• Is a given CFL inherently ambiguous?

• Is the intersection of two CFL’s empty?

• Are two CFL’s the same?

• Is a given CFL equal to S*, where S is the
alphabet of this language?

