Properties of Context-Free Languages

Unit-IV

Outline

Introduction

- The Pumping Lemma for CFL's
- **Closure Properties of CFL's**
- **Decision Properties of CFL's**

Introduction

- Main concepts to be taught in this chapter:
 - CFG's may be simplified to fit certain special forms, like Chomsky normal form and Greiback normal form.
 - Some, but not all, properties of RL's are also possessed by the CFL's.
 - Unlike the RL, many questions about the CFL cannot be answered. That is, there are many undecidable problems about CFL's.

• Concept:

In this section, we want to prove that

every CFL(without ε)can be generated by a CFG in which all productions are of the form A \rightarrow BC or A \rightarrow a where A, B and C are Variables and a is a terminal. This form is called Chomsky Normal Form.

To get there we need to need to make the following simplifications:

- eliminating useless symbols (which do not appear in any derivation from the start symbol)
- eliminating ε -productions (of the form $A \rightarrow \varepsilon$)
- eliminating *unit productions* (of the form $A \rightarrow B$)

- Eliminating Useless Symbols
 - We say symbol X is *useful* for a grammar G = (V, T, P, S) if there is some derivation $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$ with $w \in T^*$.
 - A symbol is said to be *useless* if not useful.
 - Omitting useless symbols obviously will not change the language generated by the grammar.
 - Two types of *usefulness*:
 - X is generating if $X \Rightarrow^* w$
 - *X* is *reachable* if $S \Rightarrow^* \alpha X \beta$

• Eliminating Useless Symbols

– Example

Given the grammar

 $S \rightarrow AB \mid a$ $A \rightarrow b$

- B is not generating, and is so eliminated first, resulting in S → a, A → b, in which A is not reachable and so eliminated too, with S → a as the only production left.
- If we eliminate unreachable symbols first and then non-generating ones, we get the final result S → a, A → b, which is not what we want!
- So, the order of eliminations is *essential*.

- Eliminating Useless Symbols
 - Theorem

Let G = (V, T, P, S) be a CFG, and assume that $L(G) \neq \phi$, i.e., assume that G generates at least one string. Let $G_1 = (V_1, T_1, P_1, S)$ be the grammar obtained by the following steps *in order*:

 eliminate non-generating symbols and all related productions, resulting in grammar G₂;

• eliminate all symbols not reachable in G_2 .

Then, G_1 has no useless symbol and $L(G_1) = L(G)$.

- Computing Generating & Reachable Symbols
 - How to compute generating symbols?
 - Basis: every terminal symbol is generating.
 - Induction: if every symbol in α in $A \rightarrow \alpha$ is generating, then A is generating.
 - How to compute reachable symbols?
 - Basis: the start symbol S is reachable.
 - Induction: if nonterminal A is reachable, then all the symbols in $A \rightarrow \alpha$ are reachable.

- Eliminating ε-Productions
 - We want to prove that if a language *L* has a CFG, then the language $L - \{\varepsilon\}$ has a CFG without ε production.
 - Two steps for the above proof:
 - Find "nullable" symbols
 - Transform productions into ones which generate no empty string using the nullable symbols
 - A nonterminal A is said to be *nullable* if $A \Rightarrow^* \varepsilon$.

- Eliminating ε-Productions
 - Example
 - Given a grammar with productions

 $S \rightarrow AB$ $A \rightarrow aAA \mid \varepsilon$ $B \rightarrow bBB \mid \varepsilon$

- A, B are nullable because they derive empty strings
- *S* is also *nullable* because *A*, *B* are nullable. (to be continued)

- Eliminating ε-Productions
 - How to find nullable symbols systematically? (Algorithm 1)
 - Basis: If $A \rightarrow \varepsilon$ is a production, then A is nullable.
 - Induction: If all C_i in $B \rightarrow C_1 C_2 \dots C_k$ are nullable, then B is nullable, too.

- Construction of the grammar without εproductions:
 - For each production $A \rightarrow X_1 X_2 \dots X_k$, in which *m* of the *k* X_i 's are nullable, then generate accordingly 2^m versions of this production where
 - (1) the nullable X's in all possible combinations are present or absent; and
 - (2) If m=k then do not include the case where all X'_i 's are absent.
 - (3) if $A \rightarrow \varepsilon$ is a production in P, eliminate it.

- Eliminating ϵ -Productions
 - Example (cont'd)
 - For $S \rightarrow AB$, $A \rightarrow aAA \mid \varepsilon, B \rightarrow bBB \mid \varepsilon$,
 - We know S, A, B are nullable.
 - From $S \rightarrow AB$, we get $S \rightarrow AB \mid A \mid B \mid \varepsilon$ where $S \rightarrow \varepsilon$ should be eliminated.
 - From $A \rightarrow aAA$, we get $A \rightarrow aAA \mid aA \mid aA \mid a$ where the repeated $A \rightarrow aA$ should be removed.
 - And from $B \rightarrow bBB$, similarly we get $B \rightarrow bBB | bB | b$.
 - Overall result:
 - $S \rightarrow AB \mid A \mid B$
 - $A \rightarrow aAA \mid aA \mid a$
 - $B \rightarrow bBB \mid bB \mid b$

- Eliminating Unit Productions
 - A unit production is of the form $A \rightarrow B$.
 - Unit productions sometimes are useful.
 - For example, use of unit productions $E \rightarrow T$ and $T \rightarrow F$ removes ambiguity in the 'expression grammar,' resulting in the following unambiguous grammar:

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

- Eliminating Unit Productions
 - But unit productions complicate certain proofs.
 - A two-step technique to eliminate unit productions without changing the generated language:
 - Find all "unit pairs"
 - Expand productions using unit pairs until all unit productions disappear.

- Eliminating Unit Productions
 - Definition of *unit pair*
 - Basis: (A, A) is a unit pair for any nonterminal.
 - Induction: If (A, B) is a unit pair and $B \rightarrow C$ is a production, then (A, C) is a unit pair.

- Eliminating Unit Productions
 - -Example --- The unit pairs for grammar

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

may be derived as follows:

- unit pair (E, E) & $E \rightarrow T \implies$ unit pair (E, T)
- unit pair $(E, T) \& T \to F \implies$ unit pair (E, F)
- unit pair $(E, F) \& F \to I \implies$ unit pair (E, I)
- unit pair $(T, T) \& T \to F \implies$ unit pair (T, F)
- unit pair $(T, F) \& F \to I \implies$ unit pair (T, I)

unit pair (F, F) & $F \rightarrow I \qquad \Rightarrow \qquad$ unit pair (F, I)

Totally, there are 10 unit pairs---

the above six plus the four (*E*, *E*), (*T*, *T*), (*F*, *F*), (*I*, *I*).

- Eliminating Unit Productions
 - How to expand productions using unit pairs until all unit productions disappear? :
 - Given a grammar G = (V, T, P, S), we construct another
 G₁ = (V, T, P₁, S) as follows:
 - Find all the unit pairs of G;
 - For each unit pair (*A*, *B*), add to P_1 all the productions $A \rightarrow \alpha$, where $B \rightarrow \alpha$ is a *non-unit* production in *P*.

- Eliminating Unit Productions
 - Example (continuation of Example)

Unit pair	Productions
(E, E)	$E \rightarrow E + T \text{ (from } E \rightarrow E + T\text{)}$
(E,T)	$E \to T * F \text{ (from } T \to T * F)$
(E, F)	$E \rightarrow (E)$
(E, I)	$E \rightarrow a / b / Ia / Ib / I0 I1$
(T,T)	$T \rightarrow T * F$
(T,F)	$T \rightarrow (E)$
(T, I)	$T \rightarrow a / b / Ia / Ib / I0 I1$
(F,F)	$F \rightarrow (E)$
(F, I)	$F \rightarrow a / b / Ia / Ib / I0 I1$
(<i>I</i> , <i>I</i>)	$I \rightarrow a / b / Ia / Ib / I0 I1$

• The final production set is the *union* of all those on the right colump.

- Perform eliminations of the following *order* to a grammar *G*:
 - Elimination of ε-productions;
 - Elimination of unit productions;
 - Elimination of useless symbols,

then we can get an equivalent grammar generating the same language *except the empty string* ε.

Chomsky Normal Form

 A grammar G is said to be in Chomsky Normal form, or CNF, if all its productions are in one of the following two simple forms:

- $A \rightarrow BC$
- $A \rightarrow a$

where *A*, *B* and *C* are nonterminals and *a* is a terminal; and further *G* has no useless symbol.

- Chomsky Normal Form
 - Transformation of a grammar into CNF:
 - Put G into a form by eliminating ε-productions, then unit productions and finally useless symbols;
 - (2) Transform it into the two production forms of CNF.
 - Steps to achieve the 2nd goal above:
 - (a) Arrange all production bodies of length 2 or more to consist only of nonterminals
 - (b) Break production bodies of length 3 or more into a cascade of productions, each with a body consisting of 2 nonterminals.

- Chomsky Normal Form
 - For goal (a) above:
 - For every terminal *a*, create a new nonterminal, say *A*. (Now, every production has a body of a single terminal or at least 2 nonterminals & no terminal.)
 - -For goal (b) above:
 - Break production $A \rightarrow B_1B_2...B_k$, $k \ge 3$, into a group of productions with 2 nonterminals in each body as follows: $A \rightarrow B_1C_1$, $C_1 \rightarrow B_2C_2$, ...,

$$C_{k-3} \rightarrow B_{k-2}C_{k-2}, C_{k-2} \rightarrow B_{k-1}B_k$$
²³

Chomsky Normal Form

- **Example** --- Conversion of the expression grammar into CNF.

 $E \to T \mid E + T$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

(1) create new nonterminals for the terminals to produce the following productions:

$$\begin{array}{ccccccccc} A \rightarrow a & B \rightarrow b & Z \rightarrow 0 & O \rightarrow 1 \\ P \rightarrow + & M \rightarrow * & L \rightarrow (& R \rightarrow) \\ (2) & E \rightarrow E + T \mid T * F \mid (E) \mid a \mid b \mid |a \mid |b \mid |0 \mid |1 \\ \Rightarrow E \rightarrow EPT \mid TMF \mid LER \mid a \mid b \mid |A \mid |B \mid |Z \mid |0 \\ T \rightarrow \dots \\ F \rightarrow \dots \\ \Rightarrow E \rightarrow EC_1, C_1 \rightarrow PT, \dots \end{array}$$

• The Size of Parse Trees

Theorem:

Suppose we have a parse tree according to a CNF grammar G=(V,T,P,S), and suppose that the yield of the tree is a terminal string w. If the length of the longest path is n, then $|w| <= 2^{n-1}$.

Basis: n=1. It results in a tree with a maximum path length of 1. It consists of only a root and one leaf labeled by a terminal.

|w|=1 since 2ⁿ⁻¹ =1

Induction: Let n>1 .Since n>1 the tree starts with the production A->BC. No path in the subtrees rooted at B and C can have greater than n-1. The subtrees have yield of length 2^{n-2} . The yield of the entire tree is $2^{n-2} + 2^{n-2} = 2^{n-1}$.

- Statement of the Pumping Lemma
- Theorem (pumping lemma for CFL's)

Let *L* be a CFL. There exists an integer constant *n* such that if $z \in L$ with $|z| \ge n$, then we can write z = uvwxy, subject to the following conditions:

1. $|vwx| \le n;$

2. $vx \neq \varepsilon$ (that is, *v*, *x* are not both ε);

3. for all $i \ge 0$, $uv^i wx^i y \in L$.

Proof

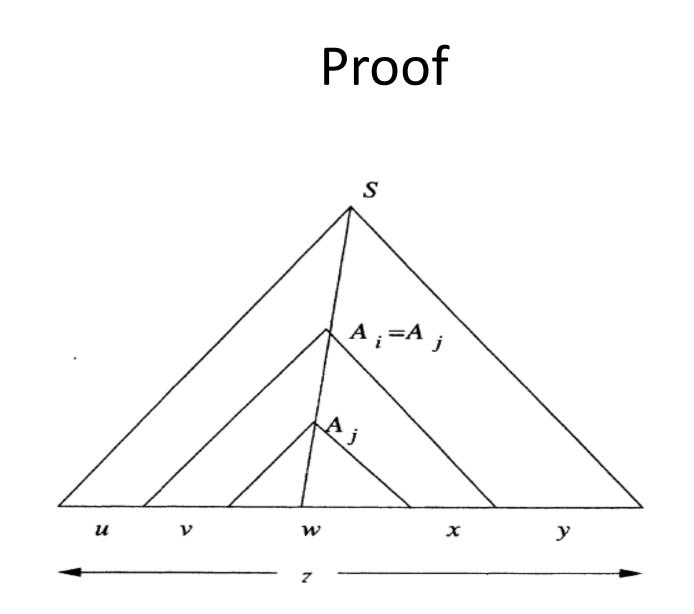
Our first step is to find a Chomsky-Normal-Form grammar G for L. Technically, we cannot find such a grammar if L is the CFL \emptyset or { ε }.

However, if $L == \emptyset$ then the statement of the theorem, which talks about a string z in L surely cannot be violated, since there is no such z in 0.

Also, the CNF grammar G will actually generate L- $\{\epsilon\}$, but that is again not of importance, since we shall surely pick n > 0, in which case z cannot be ϵ anyway.

Proof

- Starting with a CNF grammar G= (V,T,P,S) such that L(G) = L-{ ϵ }, let G have m variables. Choose n = 2^m.
- Next, suppose that z in L is of length at least n. By the previous theorem, any parse tree whose longest path is of length m or less must have a yield of length $2^{m-1} = n/2$ or less.
- Such a parse tree cannot have yield z, because z is too long. Thus, any parse tree with yield z has a path of length at least m + 1.
- Let k+1 be the longest path in the tree where k is at least m. Since k >=m there are at least m+1 occurrences of variables.
- As there are only m different variables in V, at least two of the last m + 1 variables on the path must be the same variable. Suppose Ai = Aj, where $k-m \le i \le J \le k$.
- The tree is divided into three parts.



Proof

String w is the yield of the subtree rooted at A_i.

There are no unit productions so v and x both can not be ϵ .

The strings v and x can be pumped any number of times resulting in uvⁱwxⁱy

Since k-i<=m the longest path rooted at A_i is no greater than m+1 and its yield is no greater than 2^m=n. Therefore |vwx|<=n.

Applications of Pumping Lemma

1. We pick a language L that we want to show is not a CFL.

2. Our "adversary" gets to pick n, which we do not know, and we therefore must plan for any possible n.

3. We get to pick z, and may use n as a parameter when we do so.

4. Our adversary gets to break z into uvwxy, subject only to the constraints that |vwx| <= n and $vx! = \epsilon$

5. If we can pick i and show that uvⁱ wxⁱy is not in L then L is not CFL

 Applications of Pumping Lemma – Example

Prove by contradiction the language $L = \{0^n 1^n 2^n \mid n \ge 1\}$ is not a CFL by the pumping lemma.

Proof.

- Suppose *L* is a CFL. Then there exists an integer *n* as given by the lemma.
- Pick $z = 0^n 1^n 2^n$ with $|z| = 3n \ge n$, which can be written as z = uvwxy where
 - (1) $|vwx| \le n;$
 - (2) v, x are not both ε ; and
- (3) the pumping is true.

 Applications of Pumping Lemma – Example

Proof (cont'd).

- By (1), *vwx* cannot include both 0 and 2 because there are *n* 1's in between. This can be elaborated by two cases:
 - (a) *vwx* has no 2;
 - (b) *vwx* has no 0.
- The two cases are discussed as follows.

- Applications of Pumping Lemma
 - Example (cont'd)
 - (a) *vwx* has no 2 ----
 - —Then v and x consists only 0's and 1's. Now 'pump' up z' = uv⁰wx⁰y = uwy which, as said by the lemma, is in L.
 - It is not possible because the resulting string uwy has n 2's but fewer number of 0's or 1's.

- Applications of Pumping Lemma
 Example (cont'd)
 - (b) *vwx* has no 0 ----
 - -By symmetry, we can draw the same conclusion as in (a).
 - -Since no other case exists, we conclude by contradiction that *L* is not a CFL.

Closure Properties of CFL's

- Some differences of CFL's from RL's:
 - CFL's are not closed under *intersection*, *difference*, or *complementation*
 - But the intersection or difference of a CFL and an RL is still a CFL.

- Substitution
 - Definitions:
 - A substitution s on an alphabet Σ is a function such that for each $a \in \Sigma$, s(a) is a language L_a over any alphabet (not necessarily Σ).
 - For a string $w = a_1 a_2 \dots a_n \in \Sigma^*$, $s(w) = s(a_1)s(a_2)\dots s(a_n) = L_{a_1}L_{a_2}\dots L_{a_n}$, i.e., s(w) is a language which is the concatenation of all L_{a_i} 's.
 - Given a language $L, s(L) = \bigcup_{w \in L} s(w)$.

Substitution

– Example

- A substitution s on an alphabet $\Sigma = \{0, 1\}$ is defined as $S(0) = \{a^n b^n \mid n \ge 1\}, s(1) = \{aa, bb\}.$
- Let w = 01, then $s(w) = s(0)s(1) = \{a^nb^n \mid n \ge 1\}$ $\{aa, bb\} = \{a^nb^naa \mid n \ge 1\} \cup \{a^nb^{n+2} \mid n \ge 1\}.$
- Let $L = L(\mathbf{0}^*)$, then $s(L) = \bigcup_{k=0, 1}, ..., s(0^k)$ = $(s(0))^*$ (provable) = $(\{a^n b^n \mid n \ge 1\})^*$ = $\{\varepsilon\} \cup \{a^n b^n \mid n \ge 1\} \cup \{a^n b^n \mid n \ge 1\}^2 \cup ...$
- S(L) includes strings like aabbaaabbb, abaabbabab,...

Substitution

– Theorem

If *L* is a CFL over alphabet Σ , and *s* is a substitution on Σ such that s(a) is a CFL for each *a* in Σ , then s(L) is a CFL.

• Applications of Substitution Theorem

– Theorem

- The CFL's are closed under the following operations:
 - 1. Union.
 - 2. Concatenation.
 - 3. Closure (*), and positive closure (+).
 - 4. Homomorphism.

- Union: Let L1 and L2 be CFL's. Then L1 U L2 is the language s(L), where L is the language {1, 2}, and s is the substitution defined by s(1) =L1 and s(2) = L2.
- Concatenation: Again let L1 and L2 be CFL's. Then L1L2 is the language s(L), where L is the language {12}, and s is the same substitution as in union.

- Closure and positive closure: If L_1 is a CFL, L is the language $\{1\}^*$ and s is the substitution $s(1) = L_1$ then L_1 *= s(L). Similarly, if L is instead the language $\{1\}^+$, then L⁺ = s(L).
- Homomorphism : Suppose L is a CFL over alphabet ∑, and h is a homomorphism on ∑. Let s be the substitution that replaces each symbol a in ∑ by the language consisting of the one string that is h(a). That is, s(a) = {h(a)}, for all a in ∑. Then h(L) = s(L).

- Reversal
 - Theorem
 - If L is a CFL, so is L^R .
- Intersection with an RL
 - The CFL is *not* closed under intersection.

Reversal

• Let L = L(G) for some CFL G = (V, T, P, S). Construct $G^{R} = (V,T, P^{R}, S)$, where P^{R} is the "reverse" of each production in P. That is, if $A \rightarrow \alpha$ is a production of G, then $A \rightarrow \alpha^{R}$ is a production of G^{R} . It is an easy induction on the lengths of derivations in G and G^R to show that $L(G^{R}) = L(R)$. All the sentential forms of GR are reverses of sentential forms of G.

- The CFL is not closed under intersection.
- Example
 - $L = \{0^n 1^n 2^n \mid n \ge 1\}$ is not CFL $L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\} \& L_2$ = $\{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}$ are CFL's.
 - A grammar for L_1 is: $S \rightarrow AB, A \rightarrow 0A1 \mid 01, B \rightarrow 2B \mid 2$.
 - A grammar for L_2 is: $S \rightarrow AB, A \rightarrow 0A \mid 0, B \rightarrow 1B2 \mid 12$.
 - It is easy to see that $L_1 \cap L_2 = L$ because L_1 requires same number of 0s and 12 and L_2 requires same number of 1s and 2s which means *L* must have equal number of 0s, 1s and 2s.
 - This shows that intersection of two CFL's L₁ and L₂ yields a non-CFL L.
 - So CFL's are not closed under intersection.

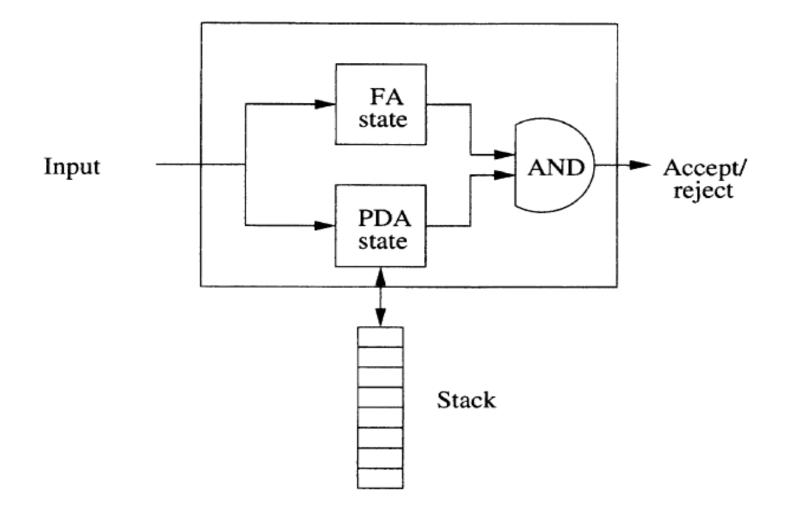
• Intersection with an RL

– Theorem

If L is a CFL and R is an RL, then $L \cap R$ is a CFL.

- Intersection with an RL
 - Theorem
 - The following are true about CFL's L, L_1 , and L_2 , and an RL R:
 - 1. *L R* is a CFL;
 - 2. <u>L</u> is *not* necessarily a CFL;
 - 3. $L_1 L_2$ is *not* necessarily a CFL.

Intersection with a RL



Intersection with a RL

PROOF: This proof requires the pushdown-automaton representation of CFL's, as well as the finite-automaton representation of regular languages, and generalizes the proof of Theorem 4.8, where we ran two finite automata "in parallel" to get the intersection of their languages. Here, we run a finite automaton "in parallel" with a PDA, and the result is another PDA, as suggested in Fig. 7.9. Formally, let

$$P = (Q_P, \Sigma, \Gamma, \delta_P, q_P, Z_0, F_P)$$

be a PDA that accepts L by final state, and let

$$A = (Q_A, \Sigma, \delta_A, q_A, F_A)$$

be a DFA for R. Construct PDA

$$P' = (Q_P \times Q_A, \Sigma, \Gamma, \delta, (q_P, q_A), Z_0, F_P \times F_A)$$

where $\delta((q, p), a, X)$ is defined to be the set of all pairs $((r, s), \gamma)$ such that:

Intersection with a RL

- 1. $s = \hat{\delta}_A(p, a)$, and
- 2. Pair (r, γ) is in $\delta_P(q, a, X)$.

That is, for each move of PDA P, we can make the same move in PDA P', and in addition, we carry along the state of the DFA A in a second component of the state of P'. Note that a may be a symbol of Σ , or $a = \epsilon$. In the former case, $\hat{\delta}(p, a) = \delta_A(p, a)$, while if $a = \epsilon$, then $\hat{\delta}(p, a) = p$; i.e., A does not change state while P makes moves on ϵ input.

It is an easy induction on the numbers of moves made by the PDA's that $(q_P, w, Z_0) \stackrel{*}{\underset{D}{\vdash}} (q, \epsilon, \gamma)$ if and only if $((q_P, q_A), w, Z_0) \stackrel{*}{\underset{P'}{\vdash}} ((q, p), \epsilon, \gamma)$, where $p = \hat{\delta}(q_A, w)$.

- Inverse Homomorphism
 - Theorem

Let *L* be a CFL and *h* a homomorphism. Then $h^{-1}(L)$ is a CFL.

- Facts:
 - Unlike RLs' decision problems which are all solvable, very little can be said about CFL's.
 - Only two problems *can* be decided for CFL's:
 - Whether the language is empty.
 - Whether a given string is in the language.
 - Computational complexity for conversions between CFG's and PDF's will be investigated.

- Complexity of Converting among CFG's and PDA's
 - Assume:
 - *n* = length of representation of a PDA or a CFG
 - The following are conversions of O(n) time (linear time):
 - CFG \Rightarrow PDA (by algorithm of Theorem)
 - PDA by final state \Rightarrow PDA by empty stack (by construction of Theorem)
 - PDA by empty stack ⇒ PDA by final state (by construction of Theorem)

- Complexity of Converting among CFG's and PDA's
 - Conversion from PDA's to CFG's is not linear.
 - There is an O(n³) algorithm that takes a PDA P of length n and produces an equivalent CFG of length at most O(n³). This CFG generates the same language as P accepts by empty stack. Optionally we can cause G to generate the language that P accepts by final state.

- Running Time of Conversion to Chomsky Normal Form
- Detecting reachable and generating symbols of a grammar ---- O(n)
- Construction of unit pairs and elimination of unit pairs-----O(n²)
- Replacement of terminals by variables in production bodies -----O(n)
- 4) The breaking of production bodies of length 3 or more into bodies of length 2 ------ O(n)

Given a grammar G of length n, we can find an equivalent CNF grammar for G in time $O(n^2)$; the resulting grammar has length $O(n^2)$.

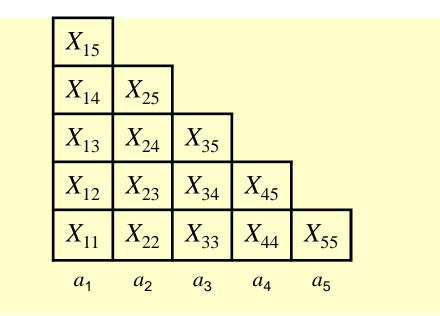
- Testing Emptiness of CFL's
 - The problem of testing emptiness of a CFL *L* is *decidable*.
 - decide if the start symbol of the grammar G for L is "generating"; if not, then L is empty.

- Testing Membership in a CFL
 - A way for solving the membership problem for a CFL L
 is to use the CNF of the CFG G for L:
 - The parse tree of an input string w of length n using the CNF grammar G has 2n – 1 nodes labelled by variables in that tree. We can generate all possible parse trees and check if a yield of them is w.
 - The number of such trees is *exponential* in *n*.

- Testing Membership in a CFL
 - A refined way is to use the CYK algorithm which takes time $O(n^3)$.
 - That is, we use the CYK algorithm to check if a given string w∈L in O(n³) time, assuming the size of the grammar is *constant*.

- Testing Membership in a CFL
 - CYK (Cocke, Younger, Kasami) Algorithm ---
 - A table-filling algorithm ("tabulation") based on the principle of *dynamic programming*
 - Input: grammar G in CNF & string $w = a_1 a_2 \dots a_n$
 - The table entry X_{ij} is the set of non-terminals Asuch that $A \Rightarrow^* a_i a_{i+1} \dots a_{j_i}$
 - If start symbol S is in X_{1n} , then $S \Rightarrow^* a_1 a_2 \dots a_n$ which means that w is generated by the start symbol S and so has answered the problem.

- Testing Membership in a CFL
 - CYK (Cocke, Younger, Kasami) Algorithm ---
 - To fill the table like the one as follows (for *n*=5), start from the bottom row and work upward row-by-row (for details, see the next page).



- Testing Membership in a CFL
 - CYK (Cocke, Younger, Kasami) Algorithm ---
 - *Basis*: for the lowest row,

set $X_{ii} = \{A \mid A \rightarrow a_i \text{ is a production of } G\}$

 Induction: for a nonterminal A to be in X_{ij}, try to find nonterminals B and C, and integer k such that

1. $i \le k < j$.

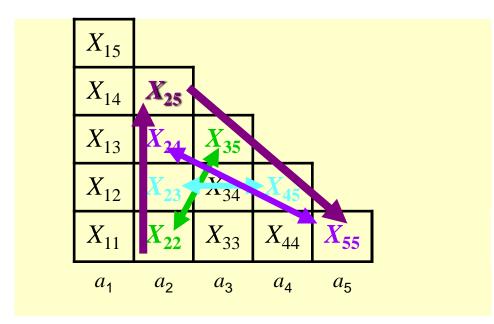
2. *B* is in *X*_{*ik*}.

3. *C* is in X_{k+1} , *j*.

4. $A \rightarrow BC$ is a production of G.

That is, to find A, we have to compute at most n pairs of previously computed sets: (X_{ii}, X_{i+1,j}), (X_{i,i+1}, X_{i+2,j}), ..., (X_{i,j-1}, X_{jj}).

- Testing Membership in a CFL
 - CYK (Cocke, Younger, Kasami) Algorithm ---
 - For example, to compute X_{ij} = X₂₅, we have to check the pairs of (X₂₂, X₃₅), (X₂₃, X₄₅), (X₂₄, X₅₅).

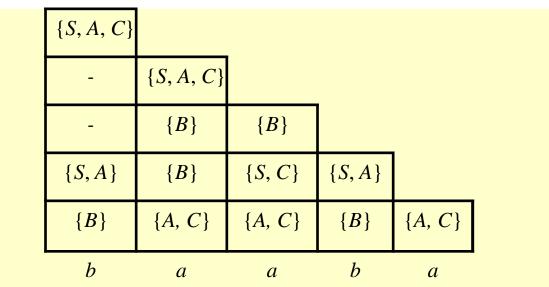


• See Fig. for the pattern of this pair computation.

- Testing Membership in a CFL
 - Example
 - Given a grammar *G* with productions: $S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$

 $B \to CC \mid b \qquad \qquad C \to AB \mid a$

• We want to test if w = baaba is generated by G.



• Since S is in X_{15} , so we decide that w is generated by G_{15}^{64}

- Preview of Undecidable CFL Problems
 - The following are undecidable CFL problems:
 - Is a given CFG G ambiguous?
 - Is a given CFL inherently ambiguous?
 - Is the intersection of two CFL's empty?
 - Are two CFL's the same?
 - Is a given CFL equal to Σ^* , where Σ is the alphabet of this language?