
UNIT-4 
 

OBJECT ORIENTED LANGUAGES 

 

Abstraction: 

 

 The concept of abstraction is fundamental in programming
 Nearly all programming languages support process abstraction with subprograms


 Nearly all programming languages designed since 1980 have supported data abstraction 

with some kind of module

 

Encapsulation: 

 

– Original motivation: 
 

Large programs have two special needs:


 

Some means of organization, other than simply division into subprograms


 
Some means of partial compilation (compilation units that are smaller than the 

whole program)


 
Obvious solution: a grouping of subprograms that are logically related into a unit that can 

be separately compiled 

 

– These are called encapsulations 

 

Examples of Encapsulation Mechanisms: 

 

 Nested subprograms in some ALGOL-like languages (e.g., Pascal) 

 

 FORTRAN 77 and C - Files containing one or more subprograms can be 

independently compiled 

 

– FORTRAN 90, C++, Ada (and other contemporary languages) - separately compliable 

modules 

 

Definitions: An abstract data type is a user-defined datatype that satisfies the following two 

conditions: 

 

Definition 1: The representation of and operations of objects of the type are defined in 

a single syntactic unit; also, other units can create objects of the type. 
 

 

Definition 2: The representation of objects of the type is hidden from the program units that 

use these objects, so the only operations possible are those provided in the type's definition. 
 



 
 

Concurrency can occur at four levels: 

 

– Machine instruction level 

 

– High-level language statement level 

 

– Unit level 

 

– Program level 

 

Because there are no language issues in instruction- and program-level 

concurrency, they are not addressed here 

 

The Evolution of Multiprocessor Architectures: 

 

 Late 1950s - One general-purpose processor and one or more special-purpose 

processors for input and output operations 

 

Early 1960s - Multiple complete processors, used for program-level concurrency


 
 

– Mid-1960s - Multiple partial processors, used for instruction-level concurrency 

 

– Single-Instruction Multiple-Data (SIMD) machine The same instruction goes to all 

processors, each with different data - e.g., vector processors 

 

– Multiple-Instruction Multiple-Data (MIMD) machines, Independent processors 

that can be synchronized (unit-level concurrency) 

 

Def: A thread of control: in a program is the sequence of program points reached as 

control flows through the program 

 

Categories of Concurrency: 

 

– Physical concurrency - Multiple independent processors ( multiple threads of control) 

 

– Logical concurrency - The appearance of physical concurrency is presented by time 

sharing one processor (software can be designed as if there were multiple threads of control) 
  Coroutines provide only quasiconcurrency



 

Reasons to Study Concurrency: 

 

 It involves a new way of designing software that can be very useful--many real-

world situation involve concurrency 

 

 Computers capable of physical concurrency are now widely used 

Fundamentals (for stmt-level concurrency) : 

 

Def: A task is a program unit that can be in concurrent execution with other program units 



 

–  Tasks differ from ordinary subprograms in that: 
 

 A task may be implicitly started




 When a program unit starts the execution of a task, it is not necessarily suspended




 When a task‘s execution is completed, control may not return to the caller


 

Def: A task is disjoint if it does not communicate with or affect the execution of any other 

task in the program in any way Task communication is necessary for synchronization 

 

– Task communication can be through: 

 

Shared nonlocal 

variables


 Parameters


Message passing


 

– Kinds of synchronization:  
 

 Cooperation


 

Task A must wait for task B to complete some specific activity before task A can 

continue its execution 

 

e.g., the producer-consumer problem 
 

 Competition


 

When two or more tasks must use some resource that cannot be simultaneously used ., a 

shared counter. A problem because operations are not atomic 

 

 Competition is usually provided by mutually exclusive access (methods are 
discussed later



 Providing synchronization requires a mechanism for delaying task execution




 Task execution control is maintained by a program called the scheduler, which 
maps task execution onto available processors



 



 
 
 
 

Tasks can be in one of several different execution states: 
 

 New - created but not yet started




 Runnable or ready - ready to run but not currently running (no available 
processor)





 Running




 Blocked - has been running, but cannot not continue (usually waiting for some 
event to occur)




 Dead - no longer active in any sense


 

Liveness is a characteristic that a program unit may or may not have 
 

 In sequential code, it means the unit will eventually complete its execution




 In a concurrent environment, a task can easily lose its liveness


 

If all tasks in a concurrent environment lose their liveness, it is called deadlock 

 

– Design Issues for Concurrency: 

 

How is cooperation synchronization provided?


 

How is competition synchronization provided?


 

How and when do tasks begin and end execution?


 

Are tasks statically or dynamically created?


 Example: 

A buffer and some producers and some consumers 

 

Technique: Attach two SIGNAL objects to the buffer, one for full spots and one for empty spot 
 

Methods of Providing Synchronization: 
 

 Semaphores




 Monitors




 Message Passing




– Semaphores (Dijkstra - 1965)  



 

– A semaphore is a data structure consisting of a counter and a queue for storing 

task descriptors 

 

– Semaphores can be used to implement guards on the code that accesses shared data structures 

 

– Semaphores have only two operations, wait and release (originally called P and V by Dijkstra)  
– Semaphores can be used to provide both competition and cooperation synchronization 

 

Cooperation Synchronization with Semaphores: Example: A shared buffer 

 

The buffer is implemented as an ADT with the operations DEPOSIT and FETCH as 

the only ways to access the buffer.


  

Use two semaphores for cooperation: 

 

Empty spots and full spots 

 

– The semaphore counters are used to store the numbers of empty spots and full spots 

in the buffer 

 

– DEPOSIT must first check empty spots to see if there is room in the buffer 

 

–  If there is room, the counter of empty spots is decremented and the value is inserted 

 

–  If there is no room, the caller is stored in the queue of empty spots 

 

–  When DEPOSIT is finished, it must increment the counter of full spots 

 

FETCH must first check full spots to see if there is a value 

 

- If there is a full spot, the counter of full spots 

 

is decremented and the value 

 

is 

 
removed 



 

–  If there are no values in the buffer, the caller must be placed in the queue of full spots 

 

–  When FETCH is finished, it increments the counter of empty spots 

 

– The operations of FETCH and DEPOSIT on the semaphores are accomplished 

through two semaphore operations named wait and release wait (aSemaphore) 

 

 

if a Semaphore‘s counter > 0 then Decrement aSemaphore‘s counter else 

 

Put the caller in aSemaphore‘s queue Attempt to transfer control to some ready task (If 

the task ready queue is empty, deadlock occurs) end 

 

release(aSemaphore) 
 
if aSemaphore‘s queue is empty then Increment aSemaphore‘s counter 

 

else 

 

Put the calling task in the task ready queue Transfer control to a task from aSemaphore‘s queue 

 

end 

 

– Competition Synchronization with Semaphores: 
 

A third semaphore, named access, is used to control access (competition synchronization)


 

The counter of access will only have the values 0 and 1


 

Such a semaphore is called a binary semaphore


 
SHOW the complete shared buffer example - Note that wait and release must be atomic! 

 

Evaluation of Semaphores: 

 

– Misuse of semaphores can cause failures in cooperation synchronization 

e.g., the buffer will overflow if the wait of full spots is left out 

 

– Misuse of semaphores can cause failures in competition synchronization e.g., The program 

will deadlock if the release of access is left out. 

 

 Monitors :( Concurrent Pascal, Modula, Mesa) 

 

The idea: encapsulate the shared data and it operations to restrict access 

 

A monitor is an abstract data type for shared data show the diagram of monitor buffer operation, 

 

–  Example language: Concurrent Pascal 

 

 Concurrent Pascal is Pascal + classes, processes (tasks), monitors, and the queue data 
type (for semaphores)





 

Example language: Concurrent Pascal (continued) processes are types Instances are 

statically created by declarations 

 
 An instance is ―started‖ by init, which allocate its local data and begins its 

execution


 
– Monitors are also types Form: 

 

type some_name = monitor (formal parameters) shared variables , local 

procedures exported procedures (have entry in definition) initialization code 

 

Competition Synchronization with Monitors: 

 

– Access to the shared data in the monitor is limited by the implementation to a single 

process at a time; therefore, mutually exclusive access is inherent in the semantic 

definition of the monitor 
 

–   Multiple calls are queued 

 

Cooperation Synchronization with Monitors: 

 

 Cooperation is still required - done with semaphores, using the queue data type and the 
built-in operations, delay (similar to send) and continue (similar to release)




 delay takes a queue type parameter; it puts the process that calls it in the specified queue and 
removes its exclusive access rights to the monitor‘s data structure



 Differs from send because delay always blocks the caller




 continue takes a queue type parameter; it disconnects the caller from the monitor, thus freeing the 
monitor for use by another process.



 It also takes a process from the parameter queue (if the queue isn‘t empty) and starts it,




Differs from release because it always has some effect (release does nothing if the queue is empty) 

 

Java Threads 

 

The concurrent units in Java are methods named run 

 

– A run method code can be in concurrent execution with other such methods 

 

– The process in which the run methods execute is called a thread 

 

Class myThread extends Thread public void run () {…} 

 

} 

 

… 

 

Thread myTh = new MyThread (); myTh.start();  



 

Controlling Thread Execution 

 

 The Thread class has several methods to control the execution of threads
 The yield is a request from the running thread to voluntarily surrender the processor
 The sleep method can be used by the caller of the method to block the thread


 The join method is used to force a method to delay its execution until the run 

method of another thread has completed its execution

 

Thread Priorities 

 

–  A thread‗s default priority is the same as the thread that create it. 
 
–  If main creates a thread, its default priority is NORM_PRIORITY 

 

– Threads defined two other priority constants, MAX_PRIORITY and MIN_PRIORITY 

 

– The priority of a thread can be changed with the methods setPriority 

 

Cooperation Synchronization with Java Threads 

 

Cooperation synchronization in Java is achieved via wait, notify, and notifyAll methods 

 

– All methods are defined in Object, which is the root class in Java, so all objects inherit them 

 

– The wait method must be called in a loop 

 

– The notify method is called to tell one waiting thread that the event it was waiting 

has happened 

 

–  The notifyAll method awakens all of the threads on the object‗s wait list  
 
 
 

Java’s Thread Evaluation 

 

– Java‗s support for concurrency is relatively simple but effective 

 

– Not as powerful as Ada‗s tasks 

 

C# Threads  

– Loosely based on Java but there are significant differences 

– Basic thread operations 

 

– Any method can run in its own thread 

 

– A thread is created by creating a Thread object 

 

– Creating a thread does not start its concurrent execution; it must be requested through the 

Start method 

 



– A thread can be made to wait for another thread to finish with Join 

 

– A thread can be suspended with Sleep 

 

– A thread can be terminated with Abort 

 

Synchronizing Threads  

– Three ways to synchronize C# threads 

– The Interlocked class 
 
– Used when the only operations that need to be synchronized are incrementing or 

decrementing of an integer 

 

– The lock statement 

 

– Used to mark a critical section of code in a thread lock (expression) {… } 

 

– The Monitor class 

 

–  Provides four methods that can be used to provide more 

EXCEPTION HANDLING 

 

In a language without exception handling: 

 

When an exception occurs, control goes to the operating system, where a 

message is displayed and the program is terminated 

 

In a language with exception handling: 

 

Programs are allowed to trap some exceptions, thereby providing the possibility 

of fixing the problem and continuing. Many languages allow programs to trap input/ output 

errors (including EOF) Definition 1: 

 

An exception is any unusual event, either erroneous or not, detectable 

by either hardware or software, that may require special processing 

 

Definition 2: The special processing that may be required after the detection of an 

exception is called exception handling 

 

Definition 3: The exception handling code unit is called an exception  handler 
 
Definition 4: An exception is raised when its associated event occurs 

 

A language that does not have exception handling capabilities can still define, detect, 

raise, and handle exceptions 

 

– Alternatives: 

 

Send an auxiliary parameter or use the return value to indicate the return status 

of a Subprogram


  e.g., C standard library functions




 

Pass a label parameter to all subprograms (error return is to the passed label)


  e.g., FORTRAN


 

Pass an exception handling subprogram to all subprograms


 
 
 

 

Advantages of Built-in Exception Handling: 

 

– Error detection code is tedious to write and it clutters the program 

 

– Exception propagation allows a high level of reuse of exception handling code 
 

Design Issues for Exception Handling: 

 

– How and where are exception handlers specified and what is their scope? 

 

– How is an exception occurrence bound to an exception handler? 

 

– Where does execution continue, if at all, after an exception handler completes its 

execution? 

 

– How are user-defined exceptions specified? 

 

– Should there be default exception handlers for programs that do not provide their own? 

 

– Can built-in exceptions be explicitly raised? 

 

– Are hardware-detectable errors treated as exceptions that can be handled? 

 

– Are there any built-in exceptions? 

 

– How can exceptions be disabled, if at all? 

 

PL/I Exception Handling 
 

 Exception handler form:


 

EX: ON condition [SNAP] BEGIN; ... END; 

 

–   condition is the name of the associated exception 
 

–   SNAP causes the production of a dynamic trace to the point of the exception 
 

–   Binding exceptions to handlers 
 
It is dynamic--binding is to the most recently executed ON statement 

 

 Continuation




– Some built-in exceptions return control to the statement where the exception was 

raised 

–   Others cause program termination 



– User-defined exceptions can be designed to go to any place in the program that is 

labeled 

 Other design choices:




–  User-defined exceptions are defined with: CONDITION exception_name 

– Exceptions can be explicitly raised with: SIGNAL CONDITION (exception_name)  
– Built-in exceptions were designed into three categories: 

 
 Those that are enabled by default but could be disabled by user code




 Those that are disabled by default but could be enabled by user code




 Those that are always enabled


 

Evaluation 
 

 The design is powerful and flexible, but has the following problems:




– Dynamic binding of exceptions to handler makes programs difficult to write and to read 


–  The continuation rules are difficult to implement and they make programs hard to read 
 

 

LOGIC PROGRAM PARADIGM: 

 

Based on logic and declarative programming 60‘s and early 70‘s, Prolog (Programming 

in logic, 1972) is the most well known representative of the paradigm. 

 

–   Prolog is based on Horn clauses and SLD resolution 

 

–   Mostly developed in fifth generation computer systems project 

 

– Specially designed for theorem proof and artificial intelligence but allows 

general purpose computation. 

 

– Some other languages in paradigm: ALF, Frill, G¨odel,, Mercury, Oz, Ciao, 

_Prolog, datalog, and CLP languages 

 

Constrain Logic Programming: 

 

Clause: disjunction of universally quantified literals, 8(L1 _ L2 _ ... _ Ln) 

 

A logic program clause is a clause with exactly one positive literal 8(A _ ¬A1 _¬A2... _ ¬An) 
 
_8(A ( A1 ^ A2... ^ An) 

 

A goal clause: no positive literal 8(¬A1 _ ¬A2... _ ¬An) 

 

Proof: by refutation, try to un satisfy the clauses with a goal clause G. Find 9(G). Linear 

resolution for definite programs with constraints and selected atom. CLP on first 

order terms. (Horn clauses). Unification. Bidirectional. Backtracking. Proof search 

based on trial of all matching clauses 
 



Prolog terms: 

 

Atoms: 
 

 

– 1 Strings with starting with a small letter and consist of o 

[a-zA-Z 0-9]* 
 

o  a aDAM a1 2 

 

–   2 Strings consisting of only punctuation 

 

*** .+. .<.>.  

 

– 3 Any string enclosed in single quotes (like an arbitrary string) o 

‘ADAM‘ ‘Onur Sehitoglu‘‘2 * 4 < 6‘ 

 

–   Numbers 

 

 1234 12.32 12.23e-10

 

Variables: 
 

 

–   Strings with starting with a capital letter or and consist of 

 

   [a-zA-Z 0-9]* 

 

–   Adam adam A093 

 

–   is the universal match symbol. Not variable 

 

Structures: 
 
 
 

Starts with an atom head have one or more arguments (any term) enclosed in parenthesis, 

separated by comma structure head cannot be a variable or anything other than atom. 

 

 

a(b) a(b,c) a(b,c,d) ++(12) +(*) *(1,a(b)) ‘hello world‘(1,2) p X(b) 4(b,c) a() ++() (3) × 

some structures defined as infix: 

 

+(1,2) _ 1+2 , :-(a,b,c,d) _ a :- b,c,d Is(X,+(Y,1)) _ X is X + 1  



 
 
 
 
 

Prolog terms: 

 

Atoms: 
 

 

– 1 Strings with starting with a small letter and consist of o 

[a-zA-Z 0-9]* 
 

o  a aDAM a1 2 

 

–   2 Strings consisting of only punctuation 

 

*** .+. .<.>.  

 

– 3 Any string enclosed in single quotes (like an arbitrary string) o 

‘ADAM‘ ‘Onur Sehitoglu‘‘2 * 4 < 6‘ 

 

–   Numbers 

 

 1234 12.32 12.23e-10

 

Variables: 
 

 

–   Strings with starting with a capital letter or and consist of 

 

   [a-zA-Z 0-9]* 

 

–   Adam adam A093 

 

–   is the universal match symbol. Not variable 

 

Structures: 
 
 
 

Starts with an atom head have one or more arguments (any term) enclosed in parenthesis, 

separated by comma structure head cannot be a variable or anything other than atom. 

 

 

a(b) a(b,c) a(b,c,d) ++(12) +(*) *(1,a(b)) ‘hello world‘(1,2) p X(b) 4(b,c) a() ++() (3) × 

some structures defined as infix: 

 

+(1,2) _ 1+2 , :-(a,b,c,d) _ a :- b,c,d Is(X,+(Y,1)) _ X is X + 1  



 
 

Static sugars: 

 

Prolog interpreter automatically maps some easy to read syntax into its 

actual structure. List: [a,b,c] _ .(a,.(b,.(c,[]))) 

 

Head and Tail: [H|T] _ .(H,T) 

 

String: "ABC" _ [65,66,67] (ascii integer values) use display (Term). to see actual structure 

of the term 

 

Unification: 

 

Bi-directional (both actual and formal argument can be instantiated). 

 

 if S and T are atoms or number, unification successful only if S = T 
 

 if S is a variable, S is instantiated as T, if it is compatible with current constraint store 

(S is instantiated to another term, they are unified) 
 

 if S and T are structures, successful if: head of S = head of T they have same arity 

unification of all corressponding terms are successful. 
 

S: list of structures, P current constraint store 
 

s 2 S, arity(s): number of arguments of structure, s 2 S, head(s): head atom of the 

structure, 
 

s 2 S, argi (s): i th argument term of the structure, p _ P: p is consistent with 

current constraint store. S _ T;P = (S,T 2 A _ S,T 2 N) ^ S = T ! true‘s S 2 V ^ S _ T |= 

P ! true; S _ T ^ P T 2 V ^ S _ T |= P ! true; 
 

S _ T ^ P S,T 2 S ^ head(S) = head(T) ^ arity(S) = arity(T) ! 
 

8i , argi (S) _ argi (T); 
 

P Unification Example: X = a ! p with X = a a(X,3) = a(X,3,2) ! × a(X,3) = b(X,3) ! × a(X,3) 

= a(3,X) ! pwith X = 3 a(X,3) = a(4,X) ! × a(X,b(c,d(e,f))) = a(b(c,Y),X) ! X = b(c,d(e,f )), Y 

= d(e,F) 
 
Declarations: 

 

Two types of clauses: 

 

p1(arg1, arg2, ...) :- p2(args,...) , p3(args,...) .means if p2 and p3 true, then p1 is true. There 

can be arbitrary number of (conjunction of) predicates at right hand side. 

 

p(arg1, arg2, ...) .sometimes called a fact. It is equivalent to: p(arg1, arg2, ...) :- true. 
 
p(args) :- q(args) ; s(args) . 

 

Is disjunction of predicates. q or s implies p. Equivalent to: p(args) :- q(args). 
 
p(args) :- s(args). 

 

A prolog program is just a group of such clauses. 
 
 
 



Lists Example: 

 

–  list membership memb(X, [X| Re s t ]) . memb(X, [ | Re s t ]) :- memb(X, Re s t ). 

 

–  concatenation conc ([] ,L,L). 

 

conc ([X|R] , L , [X|R and L ]) :- conc (R, L, R and L ). 
 

 

–  second list starts with first list prefix of ([],). Prefix of ([X|Rx], [X|Ry]) :- prefix of (Rx,Ry). 

 

– second list contains first list Sublist (L1,L2) :- prefix of (L1,L2). Sublist (L,[|R]):-

sublist(L,R). 
 
Procedural Interpretation: 

 

For goal clause all matching head clauses (LHS of clauses) are kept as backtracking points 

(like a junction in maze search) Starts from first match. To prove head predicate, RHS predicates 

need to be proved recursively. If all RHS predicates are proven, head predicate is proven. When 

fails, prolog goes back to last backtracking point and tries next choice. When no backtracking 

point is left, goal clause fails. All predicate matches go through unification so goal clause 

variables can be instantiated. 

 

Arthematic and Operations: 

 

X = 3+1 is not an arithmetic expression! 

 

operators (is) force arithmetic expressions to be evaluated all variables of the operations 

needs to be instantiated. 

 

12 is 3+X does not work! 

 

 

Comparison operators force LHS and RHS to be evaluated: 

 

X>Y, X<Y, X>=Y, X =< Y, X =:= Y, X == Y 

 

is operator forces RHS to be evaluated: X is Y+3*Y Y needs to have a numerical value when 

search hits this expression. Note that X is X+1 is never successful in Prolog. Variables are 

instantiated once. 

 

Greatest Common Divisor: gcd(m, n) = gcd(n,m − n) if n < m gcd(m, n) = gcd(n,m) if m < 

n gcd (X,X,X) . 

 

gcd (X,Y,D) :- X < Y, Y1 is Y-X, gcd (X,Y1,D). 
 
gcd (X,Y,D) :- Y < X, gcd (Y, X, D).   

 

  

 

 



 

Deficiencies of Prolog: 
 

 Resolution order control




 The closed-world assumption




 The negation problem




 Intrinsic limitations




 Applications of Logic Programming




 Relational database management systems




 Expert systems




 Natural language processing


 



 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

  



 
 

  



 
 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


