
1

Unit – 1

[Introduction to Software Engineering]

1.Software Engineering :

The term is made of two words, software and engineering.

Software is more than just a program code. A program is an executable

code, which serves some computational purpose. Software is considered

to be collection of executable programming code, associated libraries and

documentations. Software, when made for a specific requirement is

called software product.

Engineering on the other hand, is all about developing products, using

well-defined, scientific principles and methods.

Software engineering is an engineering branch associated with

development of software product using well-defined scientific principles,

methods and procedures. The outcome of software engineering is an

efficient and reliable software product.

2

2.Software Engineering Body of Knowledge

 The Software Engineering Body of Knowledge (SWEBOK) is an international

standard ISO/IEC TR 19759:2005
[1]

 specifying a guide to the generally accepted

Software Engineering Body of Knowledge.

 The Guide to the Software Engineering Body of Knowledge (SWEBOK Guide) has

been created through cooperation among several professional bodies and members of

industry and is published by the IEEE Computer Society (IEEE).

 The standard can be accessed freely from the IEEE Computer Society.
[3]

 In late 2013,

SWEBOK V3 was approved for publication and released.
[4]

 In 2016, the IEEE

Computer Society kicked off the SWEBoK Evolution effort to develop future

iterations of the body of knowledge

3.THE EVOLVING ROLE OF SOFTWARE

Today, software takes on a dual role. It is a product and, at the same time, the vehicle for

delivering a product. As a product, it delivers the computing potential embodied by computer

hardware or, more broadly, a network of computers that are accessible by local hardware.

Whether it resides within a cellular phone or operates inside a mainframe computer, software

is an information transformer—producing, managing, acquiring, modifying, displaying, or

transmitting information that can be as simple as a single bit or as complex as a multimedia

presentation. As the vehicle used to deliver the product, software acts as the basis for the

control of the computer (operating systems), the communication of information (networks),

and the creation and control of other programs (software tools and environments). Software

delivers the most important product of our time—information.

Software transforms personal data (e.g., an individual’s financial transactions) so that the data

can be more useful in a local context; it manages business information to enhance

competitiveness; it provides a gateway to worldwide information networks (e.g., Internet) and

provides the means for acquiring information in all of its forms.

The role of computer software has undergone significant change over a time span of little

more than 50 years. Dramatic improvements in hardware performance, profound changes in

computing architectures, vast increases in memory and storage capacity, and a wide variety

of exotic input and output options have all precipitated more sophisticated and complex

computer-based systems.

The lone programmer of an earlier era has been replaced by a team of software specialists,

each focusing on one part of the technology required to deliver a complex application.

And yet, the same questions asked of the lone programmer are being asked when

modern computer-based systems are built:

1)Why does it take so long to get software finished?

https://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge#cite_note-1
https://en.wikipedia.org/wiki/IEEE_Computer_Society
https://en.wikipedia.org/wiki/IEEE
https://en.wikipedia.org/wiki/IEEE_Computer_Society
https://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge#cite_note-3
https://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge#cite_note-4

3

2)Why are development costs so high?

3)Why can't we find all the errors before we give the software to customers?

4)Why do we continue to have difficulty in measuring progress as software is being

developed?

4.Changing Nature of Software :

The nature of software has changed a lot over the years.

1.System software: Infrastructure software come under this category like compilers,

operating systems, editors, drivers, etc. Basically system software is a collection of programs

to provide service to other programs.

2. Real time software: These software are used to monitor, control and analyze real world

events as they occur. An example may be software required for weather forecasting. Such

software will gather and process the status of temperature, humidity and other environmental

parameters to forcast the weather.

3. Embedded software: This type of software is placed in “Read-Only- Memory (ROM)”of

the product and control the various functions of the product. The product could be an aircraft,

automobile, security system, signalling system, control unit of power plants, etc. The

embedded software handles hardware components and is also termed as intelligent software .

4. Business software : This is the largest application area. The software designed to process

business applications is called business software. Business software could be payroll, file

monitoring system, employee management, account management. It may also be a data

warehousing tool which helps us to take decisions based on available data. Management

information system, enterprise resource planning (ERP) and such other software are popular

examples of business software.

5. Personal computer software :The software used in personal computers are covered in

this category. Examples are word processors, computer graphics, multimedia and animating

tools, database management, computer games etc. This is a very upcoming area and many big

organisations are concentrating their effort here due to large customer base.

6. Artificial intelligence software: Artificial Intelligence software makes use of non

numerical algorithms to solve complex problems that are not amenable to computation or

straight forward analysis. Examples are expert systems, artificial neural network,signal

processing software etc.

7. Web based software: The software related to web applications come under this category.

Examples are CGI, HTML, Java, Perl, DHTML etc.

4

5.Software myths:

Software Myths : What is software myth in software engineering.

 The development of software requires dedication and understanding on the

developers' part. Many software problems arise due to myths that are formed during

the initial stages of software development. Software myths propagate false beliefs

and confusion in the minds of management, users and developers.

Managers, who own software development responsibility, are often under strain and

pressure to maintain a software budget, time constraints, improved quality, and many other

considerations. Common management myths are listed in Table

Management Myths

 The members of an organization
can acquire all-the information, they
require from a manual, which
contains standards, procedures, and
principles;

 Standards are often incomplete,
inadaptable, and outdated.

 Developers are often unaware of
all the established standards.

 Developers rarely follow all the
known standards because not all the
standards tend to decrease the
delivery time of software while
maintaining its quality.

 If the project is behind
schedule,increasing the number of
programmerscan reduce the time gap.

 Adding more manpower to the
project, which is already behind
schedule, further delays the project.

 New workers take longer to
learn about the project as compared
to those already working on the
project.

 If the project is outsourced to a
third party, the management can relax
and let the other firm develop
software for them.

 Outsourcing software to a third
party does not help the organization,
which is incompetent in managing
and controlling the software project
internally. The organization
invariably suffers when it out sources
the software project.

http://ecomputernotes.com/software-engineering/software-myths
http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

5

In most cases, users tend to believe myths about the software because software managers

and developers do not try to correct the false beliefs. These myths lead to false expectations

and ultimately develop dissatisfaction among the users. Common user myths are listed in

Table.

 Table User Myths

 Brief requirement stated in the
initial process is enough to start
development; detailed requirements
can be added at the later stages.

 Starting development with
incomplete and ambiguous
requirements often lead to software
failure. Instead, a complete and
formal description of requirements is
essential before starting development.

 Adding requirements at a later
stage often requires repeating the
entire development process.

 Software is flexible; hence
software requirement changes can be
added during any phase of the
development process.

 Incorporating change requests
earlier in the development process
costs lesser than those that occurs at
later stages. This is because
incorporating changes later may
require redesigning and extra
resources.

In the early days of software development, programming was viewed as an art, but

now software development has gradually become an engineering discipline.

However, developers still believe in some myths-. Some of the common developer

myths are listed in Table.

6

Table Developer Myths

 Software development is
considered complete when the
code is delivered.

 50% to 70% of all the
efforts are expended after the
software is delivered to the
user.

 The success of a software
project depends on the quality
of the product produced.

 The quality of programs
is not the only factor that
makes the project successful
instead the documentation and
software configuration also
playa crucial role.

 Software engineering
requires unnecessary
documentation, which slows
down the project.

 Software engineering is
about creating quality at every
level of the software project.
Proper documentation
enhances quality which results
in reducing the amount of
rework.

 The only product that is
delivered after the completion
of a project is the working
program(s).

 The deliverables of a
successful project includes not
only the working program but
also the documentation to
guide the users for using the
software.

 Software quality can be
assessed only after the
program is executed.

 The quality of software
can be measured during any
phase of development process
by applying some quality
assurance mechanism. One
such mechanism is formal
technical review that can be
effectively used during each
phase of development to
uncover certain errors

7

6.The software problem: Cost, schedule and quality, Scale and

change:

[Triple constraints of Project management: Cost, schedule and quality]

In the industrial-strength software domain, there are three basic forces at play—cost,

schedule, and quality. The software should be produced at reasonable cost, in a reasonable

time, and should be of good quality. These three parameters often drive and define a software

project.

Cost :

 Industrial-strength software is very expensive primarily due to the fact that software

development is extremely labor-intensive. To get an idea of the costs involved, let us

consider the current state of practice in the industry. Lines of code (LOC) or

thousands of lines of code (KLOC) delivered is by far the most commonly used

measure of software size in the industry. As the main cost of producing software is the

manpower employed, the cost of developing software is generally measured in terms

of person-months of effort spent in development. And productivity is frequently

measured in the industry in terms of LOC (or KLOC) per person-month.

The productivity in the software industry for writing fresh code generally ranges from

few hundred to about 1000+ LOC per person-month. This productivity is over the

entire development cycle, not just the coding task. Software companies often charge

the client for whom they are developing the software between $3000 - $15,000 per

person-month. With a productivity of 1000 LOC per person-month, it means that each

line of delivered code costs between $3 and $15! And even small projects can easily

end up with software of 50,000 LOC. With this productivity, such a software project

will cost between $150,000 and $750,000!

Schedule :

 Schedule is another important factor in many projects. Business trends are dictating

that the time to market of a product should be reduced; that is, the cycle time from

concept to delivery should be small. For software this means that it needs to be

developed faster, and within the specified time. Unfortunately, the history of software

is full of cases where projects have been substantially late.

 Clearly, therefore, reducing the cost and the cycle time for software development are

central goals of software engineering. Productivity in terms of output (KLOC) per

person-month can adequately capture both cost and schedule concerns. If productivity

is higher, it should be clear that the cost in terms of person-months will be lower (the

same work can now be done with fewer person-months). Similarly, if productivity is

higher, the potential of developing the software in less time improves—a team of

8

higher productivity will finish a job in less time than a same-size team with lower

productivity. (The actual time the project will take, of course, depends also on the

number of people allocated to the project.) Hence, pursuit of higher productivity is a

basic driving force behind software engineering and a major reason for using the

different tools and techniques.

Quality :

 Besides cost and schedule, the other major factor driving software engineering is

quality. Today, quality is one of the main mantras, and business strategies are

designed around it. Unfortunately, a large number of instances have occurred

regarding the unreliability of software—the software often does not do what it is

supposed to do or does something it is not supposed to do. Clearly, developing high-

quality software is another fundamental goal of software engineering. However, while

cost is generally well understood, the concept of quality in the context of software

needs further elaboration. The international standard on software product quality [55]

suggests that software quality comprises six main attributes, as shown in Figure 1.1.

 Figure 1.1: Software quality attributes.

These attributes can be defined as follows:

 Functionality. The capability to provide functions which meet stated and implied

needs when the software is used.

 Reliability. The capability to provide failure-free service.

 Usability. The capability to be understood, learned, and used.

 Efficiency. The capability to provide appropriate performance relative to the amount

of resources used.

 Maintainability. The capability to be modified for purposes of making corrections,

improvements, or adaptation.

 Portability. The capability to be adapted for different specified environments without

applying actions or means other than those provided for this purpose in the product.

Scale and Change :

Though cost, schedule, and quality are the main driving forces for a project in our problem

domain (of industry strength software), there are some other characteristics of the problem

domain that also influence the solution approaches employed. We focus on two such

characteristics—scale and change.

9

Scale :

 Most industrial-strength software systems tend to be large and complex, requiring tens

of thousands of lines of code. Sizes of some of the well-known software products are

given in An example will illustrate this point. Consider the problem of counting

people in a room versus taking a census of a country. Both are essentially counting

problems. But the methods used for counting people in a room will just not work

when taking a census. A different set of methods will have to be used for conducting

a census, and the census problem will require considerably more management,

organization, and validation, in addition to counting.

 Similarly, methods that one can use to develop programs of a few hundred lines

cannot be expected to work when software of a few hundred thousand lines needs to

be developed. A different set of methods must be used for developing large software.

 Any software project involves the use of engineering and project management. In

small projects, informal methods for development and management can be used.

However, for large projects, both have to be much more rigorous, as illustrated in

Figure 1.2. In other words, to successfully execute a project, a proper method for

engineering the system has to be employed and the project has to be tightly managed

to make sure that cost, schedule, and quality are under control. Large scale is a key

characteristic of the problem domain and the solution approaches should employ tools

and techniques that have the ability to build large software systems

Figure 1.2: The problem of scale.

10

Change :

 Change is another characteristic of the problem domain which the approaches for

development must handle. As the complete set of requirements for the system is

generally not known (often cannot be known at the start of the project) or stated, as

development proceeds and time passes, additional requirements are identified, which

need to be incorporated in the software being developed. This need for changes

requires that methods for development embrace change and accommodate it

efficiently. Change requests can be quite disruptive to a project, and if not handled

properly, can consume up to 30 to 40% of the development cost [14].

 As discussed above, software has to be changed even after it has been deployed.

Though traditionally changes in software during maintenance have been distinguished

from changes that occur while the development is taking place, these lines are

blurring, as fundamentally the changes in both of these scenarios are similar—existing

source code needs to be changed due to some changes in the requirements or due to

some defects that need to be removed.

 Overall, as the world changes faster, software has to change faster, even while under

development. Changes in requirements are therefore a characteristic of the problem

domain. In today’s world, approaches that cannot accept and accommodate change

are of little use—they can solve only those few problems that are change resistant.

7. Principles of Software Engineering :

Seven principles have been determined which form a reasonably independent

and complete set. These are:

(1) Manage using a phased life-cycle plan.

(2) Perform continuous validation.

(3) Maintain disciplined product control.

(4) Use modern programming practices.

(5) Maintain clear accountability for results.

(6) Use better and fewer people.

(7) Maintain a commitment to improve the process.

11

8.

12

13

14

9.Software Process
A software process (also knows as software methodology) is a set of related activities that

leads to the production of the software. These activities may involve the development of the

software from the scratch, or, modifying an existing system.

Any software process must include the following four activities:

1. Software specification (or requirements engineering): Define the main functionalities

 of the software and the constrains around them.

2. Software design and implementation: The software is to be designed and

 programmed.

3. Software verification and validation: The software must conforms to it’s

 specification and meets the customer needs.

4. Software evolution (software maintenance): The software is being modified to meet

 customer and market requirements changes.

In practice, they include sub-activities such as requirements validation, architectural design,

unit testing, …etc.

There are also supporting activities such as configuration and change management, quality

assurance, project management, user experience.

10.Software Process Framework:
A process framework establishes the foundation for a complete software process by

identifying a small number of framework activities that are applicable to all software

projects, regardless of size or complexity. It also includes a set of umbrella

activities that are applicable across the entire software process. Some most applicable

framework activities are described below.

http://www.onlineclassnotes.com/2016/04/what-is-software-process.html?ref=Content%20Body
http://www.onlineclassnotes.com/2016/04/what-is-software-process.html?ref=Content%20Body
http://www.onlineclassnotes.com/2013/01/describe-umbrella-activities.html?ref=Content%20Body
http://www.onlineclassnotes.com/2013/01/describe-umbrella-activities.html?ref=Content%20Body

15

11.Elements of software process:

They are different elements of software process.

1. Communication:
This activity involves heavy communication with customers and
other stakeholders in order to gather requirements and other
related activities.

2. Planning:
Here a plan to be followed will be created which will describe the technical
tasks to be conducted, risks, required resources, work schedule etc.

3. Modeling:
A model will be created to better understand the requirements and design
to achieve these requirements.

4. Construction:
Here the code will be generated and tested.

16

5.Deployment:
Here, a complete or partially complete version of the software is
represented to the customers to evaluate and they give feedbacks based
on the evaluation.

12.Q) Is software engineering applicable when WebApps are built? If so,

how might it be modified to accommodate the unique characteristics

of WebApps?

Ans)Yes,software engineering is applicable, when WebApps are

built because it is a layered technology and consists of Tools, Methods,

Process, and A quality focus.

13.Hardware characteristics are completely different from

software characteristics. Justify

Ans)Dif ferences be tween Hardware and Sof tware Deve lopm ent

o Software is easier to change than hardware. The cost of change is much higher

for hardware than for software.

o Software products evolve through multiple releases by adding new features

and re-writing existing logic to support the new features. Hardware products

consist of physical components that cannot be “refactored” after

manufacturing, and cannot add new capabilities that require hardware

changes.

o Designs for new hardware is often based upon earlier-generation products, but

commonly rely on next-generation components not yet present.

o Hardware designs are constrained by the need to incorporate standard parts.

o Specialized hardware components can have much longer lead times for

acquisition than is true for software.

o Hardware design is driven by architectural decisions. More of the architectural

work must be done up front compared to software products.

o The cost of development for software products is relatively flat over time.

However, the cost of hardware development rises rapidly towards the end of

the development cycle. Testing software commonly requires developing

thousands of test cases. Hardware testing involves far fewer tests.

17

o Software testing is done by specialized Quality Assurance (QA) engineers,

while hardware testing is commonly done by the engineers who are creating

the product.

o Hardware must be designed and tested to work over a range of time and

environmental conditions, which is not the case for software.

o Hardware development incorporates four parallel, synchronized projects:

 UNIT 1

 [QUESTIONS]

1. Explain about The evolving role of software.

2. How software changed from day to day.

 [or]

Explain about the changing nature of software.

 [or]

Explain about applications of software.[same answer for the any

of the question asked]

3. What are the common software myths? Explain.

4. What are the main Software problems during its development?

What are its major disadvantages?

 [The software problem: Cost, schedule and quality, Scale and

 Change. You can write about these when asked this question.]

18

5. What is software Engineering? Explain software Engineering

Book of Knowledge.

6. Explain the Principles of Software Engineering.

7. Explain software process. What are elements of software

process.

8. Hardware characteristics are completely different from

software characteristics. Justify.

9. Sketch the common framework for software process and

explain.

10. What are software components? Explain software

 Characteristics.

11. Explain the importance of software engineering.

Layered Technology

Software engineering is fully a layered technology, to develop software we need to go

from one layer to another. All the layers are connected and each layer demands the

fulfillment of the previous layer.

 Fig: The diagram shows the layers of software development

Layered technology is divided into four parts:
1. A quality focus: It defines the continuous process improvement principles of software.

It provides integrity that means providing security to the software so that data can be

accessed by only an authorized person, no outsider can access the data. It also focuses on

maintainability and usability.

2. Process: It is the foundation or base layer of software engineering. It is key
that binds all the layers together which enables the development of software
before the deadline or on time. Process defines a framework that must be
established for the effective delivery of software engineering technology. The
software process covers all the activities, actions, and tasks required to be
carried out for software development.

https://www.geeksforgeeks.org/software-engineering-introduction-to-software-engineering/

Process activities are listed below:-
• Communication: It is the first and foremost thing for the development of

software. Communication is necessary to know the actual demand of the
client.

• Planning: It basically means drawing a map for reduced the complication of
development.

• Modeling: In this process, a model is created according to the client for
better understanding.

• Construction: It includes the coding and testing of the problem.
• Deployment:- It includes the delivery of software to the client for evaluation

and feedback.
3. Method: During the process of software development the answers to all
“how-to-do” questions are given by method. It has the information of all the
tasks which includes communication, requirement analysis, design modeling,
program construction, testing, and support.
4. Tools: Software engineering tools provide a self-operating system for
processes and methods. Tools are integrated which means information created
by one tool can be used by another.

Software Process Framework

Framework is a Standard way to build and deploy applications. Software
Process Framework is the foundation of complete software engineering
process. Software process framework includes set of all umbrella activities. It
also includes number of framework activities that are applicable to all software
projects.

A generic process framework encompas

ses five activities which are given below one by one:

1. Communication:
In this activity, heavy communication with customers and other stakeholders,
as well as requirement gathering is done.

2. Planning:
In this activity, we discuss the technical related tasks, work schedule, risks,
required resources, etc.

3. Modeling:
Modeling is about building representations of things in the ‘real world’. In
modeling activity, a product’s model is created in order to better understand
the requirements.

4. Construction:
In software engineering, construction is the application of set of procedures
that are needed to assemble the product. In this activity, we generate the
code and test the product in order to make better product.

5. Deployment:
In this activity, a complete or non-complete product or software is
represented to the customers to evaluate and give feedback. On the basis of
their feedback, we modify the product for supply of better product.

Umbrella activities include:
• Risk Management
• Software Quality Assurance (SQA)
• Software Configuration Management (SCM)
• Measurement
• Formal Technical Reviews (FTR)

Capability maturity model (CMM)

CMM was developed by the Software Engineering Institute (SEI) at Carnegie
Mellon University in 1987.

• It is not a software process model. It is a framework that is used to analyze
the approach and techniques followed by any organization to develop
software products.

• It also provides guidelines to further enhance the maturity of the process
used to develop those software products.

• It is based on profound feedback and development practices adopted by the
most successful organizations worldwide.

• This model describes a strategy for software process improvement that
should be followed by moving through 5 different levels.

• Each level of maturity shows a process capability level. All the levels except
level-1 are further described by Key Process Areas (KPA’s).

Shortcomings of SEI/CMM:
• It encourages the achievement of a higher maturity level in some cases by

displacing the true mission, which is improving the process and overall
software quality.

• It only helps if it is put into place early in the software development process.
• It has no formal theoretical basis and in fact is based on the experience of

very knowledgeable people.
• It does not have good empirical support and this same empirical support

could also be constructed to support other models.
Key Process Areas (KPA’s):
Each of these KPA’s defines the basic requirements that should be met by a
software process in order to satisfy the KPA and achieve that level of maturity.
Conceptually, key process areas form the basis for management control of the
software project and establish a context in which technical methods are applied,
workv products like models, documents, data, reports, etc. are produced,
milestones are established, quality is ensured and change is properly
managed.

Level-1: Initial –
• No KPA’s defined.
• Processes followed are Adhoc and immature and are not well defined.
• Unstable environment for software development.
• No basis for predicting product quality, time for completion, etc.
Level-2: Repeatable –
• Focuses on establishing basic project management policies.
• Experience with earlier projects is used for managing new similar natured

projects.
• Project Planning- It includes defining resources required, goals, constraints,

etc. for the project. It presents a detailed plan to be followed systematically
for the successful completion of good quality software.

• Configuration Management- The focus is on maintaining the performance
of the software product, including all its components, for the entire lifecycle.

• Requirements Management- It includes the management of customer
reviews and feedback which result in some changes in the requirement set.
It also consists of accommodation of those modified requirements.

• Subcontract Management- It focuses on the effective management of
qualified software contractors i.e. it manages the parts of the software which
are developed by third parties.

• Software Quality Assurance- It guarantees a good quality software product
by following certain rules and quality standard guidelines while developing.

Level-3: Defined –

• At this level, documentation of the standard guidelines and procedures takes
place.

• It is a well-defined integrated set of project-specific software engineering and
management processes.

• Peer Reviews- In this method, defects are removed by using a number of
review methods like walkthroughs, inspections, buddy checks, etc.

• Intergroup Coordination- It consists of planned interactions between
different development teams to ensure efficient and proper fulfillment of
customer needs.

• Organization Process Definition- Its key focus is on the development and
maintenance of the standard development processes.

• Organization Process Focus- It includes activities and practices that
should be followed to improve the process capabilities of an organization.

• Training Programs- It focuses on the enhancement of knowledge and skills
of the team members including the developers and ensuring an increase in
work efficiency.

Level-4: Managed –
• At this stage, quantitative quality goals are set for the organization for

software products as well as software processes.
• The measurements made help the organization to predict the product and

process quality within some limits defined quantitatively.
• Software Quality Management- It includes the establishment of plans and

strategies to develop quantitative analysis and understanding of the
product’s quality.

• Quantitative Management- It focuses on controlling the project
performance in a quantitative manner.

Level-5: Optimizing –
• This is the highest level of process maturity in CMM and focuses on

continuous process improvement in the organization using quantitative
feedback.

• Use of new tools, techniques, and evaluation of software processes is done
to prevent recurrence of known defects.

• Process Change Management- Its focus is on the continuous improvement
of the organization’s software processes to improve productivity, quality, and
cycle time for the software product.

• Technology Change Management- It consists of the identification and use
of new technologies to improve product quality and decrease product
development time.

• Defect Prevention- It focuses on the identification of causes of defects and
prevents them from recurring in future projects by improving project-defined
processes.

Process Patterns

As the software team moves through the software process they encounter problems. It

would be very useful if solutions to these problems were readily available so that

problems can be resolved quickly. Process-related problems which are encountered

during software engineering work, it identifies the encountered problem and in which

environment it is found, then it will suggest proven solutions to problem, they all are

described by process pattern. By solving problems a software team can construct a

process that best meets needs of a project.

Uses of the process pattern :

At any level of abstraction, patterns can be defined. They can be used to describe a

problem and solution associated with framework activity in some situations. While in

other situations patterns can be used to describe a problem and solution associated with a

complete process model.

•
Pattern Name –
Meaningful name must be given to a pattern within context of software
process (e.g. Technical Reviews).

• Forces –
The issues that make problem visible and may affect its solution also
environment in which pattern is encountered.

Type :
It is of three types :
1. Stage pattern –

Problems associated with a framework activity for process are described by
stage pattern. Establishing Communication might be an example of a staged
pattern. This pattern would incorporate task pattern Requirements Gathering
and others.

2. Task-pattern –
Problems associated with a software engineering action or work task and
relevant to successful software engineering practice (e.g., Requirements
Gathering is a task pattern) are defined by task-pattern.

3. Phase pattern –
Even when the overall flow of activities is iterative in nature, it defines
sequence of framework activities that occurs within process. Spiral Model or
Prototyping might be an example of a phase pattern.

Initial Context :
Conditions under which the pattern applies are described by initial context. Prior
to the initiation of the pattern :

1. What organizational or term-related activities have already occurred?
2. Entry state for the process?
3. Software engineering information or project information already exists?
For example, the Planning pattern requires that :
• Collaborative communication has been established between customers and

software engineers.
• Successful completion of a number of task patterns for the communication

pattern has occurred.
• The project constraints, basic requirements, and the project scope are

known.
Problem :
Any specific problem is to be solved by pattern.
Solution –
Describes how to implement pattern successfully. This section describes how
initial state of process is modified as a consequence of initiation of pattern.
Resulting Context :
Once the pattern has been successfully implemented, it describes conditions.
Upon completion of pattern :
1. Organizational or term-related activities must have occurred?
2. What should be the exit state for the process?
3. What software engineering information has been developed?
Related pattern :
Provide a list of all process patterns that are directly related to this one. It can
be represented n a hierarchy or in some other diagrammatic form.
Known uses and Examples –
In which the pattern is applicable, it indicates the specific instances. For
example, communication is mandatory at the beginning of every software
project, is recommended throughout the software project, and is mandatory
once the deployment activity is underway.

Personal and Team Process Model

The best software process is personal and team process model one that is close to the

people who will be doing the work. Watts Humphrey proposed two process models.

Models “Personal Software Process (PSP)” and “Team Software Process (TSP).”

Both require hard work, training, and coordination, but both are achievable.

Personal Software Process (PSP)

The Personal Software Process (PSP) emphasizes personal measurement of both the

work product that is produced and the resultant quality of the work product. In

addition PSP makes the practitioner responsible for project planning and empowers

https://esicenter.bg/processes/tsp_psp
https://theteche.com/definition-of-metrology-linear-and-angular-measurement/

the practitioner to control the quality of all software work products that are developed.

The PSP model defines five framework activities:

• Planning. This activity isolates requirements and develops both size and
resource estimates. In addition, defects estimate (the number of defects
projected for the work) is made. All metrics are recorded on worksheets or
templates. Finally, development tasks are identified and a project schedule is
created.

• High level design. External specifications for each component to be
constructed are developed and a component design is created. Prototypes are
built when uncertainty exists. All issues are recorded and tracked.

• High level design review. Formal verification methods are applied to uncover
errors in the design. Metrics are maintained for all important tasks and work
results.

• Development. The component level design is refined and reviewed. Code is
generated, reviewed, compiled, and tested. Metrics are maintained for all
important tasks and work results.

• Postmortem. Using the measures and metrics collected, the effectiveness of
the process is determined. Measures and metrics should provide guidance for
modifying the process to improve its effectiveness.

PSP stresses the need to identify errors early and, just as important, to understand the

types of errors that you are likely to make. PSP represents a disciplined, metrics based

approach to software engineering that may lead to culture shock for many

practitioners.

Team Software Process (TSP)

Watts Humphrey extended the lessons learned from the introduction of PSP and

proposed a Team Software Process (TSP). The goal of TSP is to build a “self

directed” project team that organizes itself to produce high quality software.

Humphrey defines the following objectives for TSP:

▪ Build self directed teams that plan and track their work, establish goals, and
own their processes and plans. These can be pure software teams or
integrated product teams (IPTs) of 3 to about 20 engineers.

https://theteche.com/the-unified-process-in-software-engineering/

▪ Show managers how to coach and motivate their teams and how to help them
sustain peak performance

▪ Accelerate software process improvement by making CMM23 Level 5 behavior
normal and expected.

▪ Provide improvement guidance to high-maturity organizations.
▪ Facilitate university teaching of industrial-grade team skills.

A self directed team has a consistent understanding of its overall goals and objectives;

defines roles and responsibilities for each team member; tracks quantitative project

data (about productivity and quality); identifies a team process that is appropriate for

the project and a strategy for implementing the process; defines local standards that

are applicable to the team’s software engineering work; continually assesses risk and

reacts to it; and tracks, manages, and reports project status.

TSP defines the following framework activities: project launch, high level design,

implementation, personal and team process model, integration and test, and

postmortem. TSP makes use of a wide variety of scripts, forms, and standards that

serve to guide team members in their work. “Scripts” define specific process activities

(project launch, design, implementation, integration and system testing, postmortem)

and other more detailed work functions (development planning, requirements

development, software configuration management, unit test) that are part of the team

process.

Waterfall Model:

The Waterfall Model was the first Process Model to be introduced. It is also referred to
as a linear-sequential life cycle model. It is very simple to understand and use. In a
waterfall model, each phase must be completed before the next phase can begin and
there is no overlapping in the phases.

The Waterfall model is the earliest SDLC approach that was used for software
development.

The waterfall Model illustrates the software development process in a linear sequential
flow. This means that any phase in the development process begins only if the
previous phase is complete. In this waterfall model, the phases do not overlap.

Waterfall Model - Design

Waterfall approach was first SDLC Model to be used widely in Software Engineering to
ensure success of the project. In "The Waterfall" approach, the whole process of

software development is divided into separate phases. In this Waterfall model,
typically, the outcome of one phase acts as the input for the next phase sequentially.

The following illustration is a representation of the different phases of the Waterfall
Model.

The sequential phases in Waterfall model are −

• Requirement Gathering and analysis − All possible requirements of the
system to be developed are captured in this phase and documented in a
requirement specification document.

• System Design − The requirement specifications from first phase are studied in
this phase and the system design is prepared. This system design helps in
specifying hardware and system requirements and helps in defining the overall
system architecture.

• Implementation − With inputs from the system design, the system is first
developed in small programs called units, which are integrated in the next
phase. Each unit is developed and tested for its functionality, which is referred to
as Unit Testing.

• Integration and Testing − All the units developed in the implementation phase
are integrated into a system after testing of each unit. Post integration the entire
system is tested for any faults and failures.

• Deployment of system − Once the functional and non-functional testing is
done; the product is deployed in the customer environment or released into the
market.

• Maintenance − There are some issues which come up in the client environment.
To fix those issues, patches are released. Also to enhance the product some
better versions are released. Maintenance is done to deliver these changes in
the customer environment.

All these phases are cascaded to each other in which progress is seen as flowing
steadily downwards (like a waterfall) through the phases. The next phase is started
only after the defined set of goals are achieved for previous phase and it is signed off,
so the name "Waterfall Model". In this model, phases do not overlap.

Waterfall Model - Application

Every software developed is different and requires a suitable SDLC approach to be
followed based on the internal and external factors. Some situations where the use of
Waterfall model is most appropriate are −

• Requirements are very well documented, clear and fixed.

• Product definition is stable.

• Technology is understood and is not dynamic.

• There are no ambiguous requirements.

• Ample resources with required expertise are available to support the product.

• The project is short.

Waterfall Model - Advantages

The advantages of waterfall development are that it allows for departmentalization and
control. A schedule can be set with deadlines for each stage of development and a
product can proceed through the development process model phases one by one.

Development moves from concept, through design, implementation, testing,
installation, troubleshooting, and ends up at operation and maintenance. Each phase
of development proceeds in strict order.

Some of the major advantages of the Waterfall Model are as follows −

• Simple and easy to understand and use

• Easy to manage due to the rigidity of the model. Each phase has specific
deliverables and a review process.

• Phases are processed and completed one at a time.

• Works well for smaller projects where requirements are very well understood.

• Clearly defined stages.

• Well understood milestones.

• Easy to arrange tasks.

• Process and results are well documented.

Waterfall Model - Disadvantages

The disadvantage of waterfall development is that it does not allow much reflection or
revision. Once an application is in the testing stage, it is very difficult to go back and
change something that was not well-documented or thought upon in the concept stage.

The major disadvantages of the Waterfall Model are as follows −

• No working software is produced until late during the life cycle.

• High amounts of risk and uncertainty.

• Not a good model for complex and object-oriented projects.

• Poor model for long and ongoing projects.

• Not suitable for the projects where requirements are at a moderate to high risk of
changing. So, risk and uncertainty is high with this process model.

• It is difficult to measure progress within stages.

• Cannot accommodate changing requirements.

• Adjusting scope during the life cycle can end a project.

• Integration is done as a "big-bang. at the very end, which doesn't allow
identifying any technological or business bottleneck or challenges early.

Incremental Model

Incremental Model is a process of software development where requirements divided

into multiple standalone modules of the software development cycle. In this model,

each module goes through the requirements, design, implementation and testing

phases. Every subsequent release of the module adds function to the previous release.

The process continues until the complete system achieved.

The various phases of incremental model are as
follows:

1. Requirement analysis: In the first phase of the incremental model, the product

analysis expertise identifies the requirements. And the system functional requirements

are understood by the requirement analysis team. To develop the software under the

incremental model, this phase performs a crucial role.

2. Design & Development: In this phase of the Incremental model of SDLC, the design

of the system functionality and the development method are finished with success.

When software develops new practicality, the incremental model uses style and

development phase.

3. Testing: In the incremental model, the testing phase checks the performance of each

existing function as well as additional functionality. In the testing phase, the various

methods are used to test the behavior of each task.

4. Implementation: Implementation phase enables the coding phase of the

development system. It involves the final coding that design in the designing and

development phase and tests the functionality in the testing phase. After completion of

this phase, the number of the product working is enhanced and upgraded up to the

final system product

When we use the Incremental Model?

o When the requirements are superior.

o A project has a lengthy development schedule.

o When Software team are not very well skilled or trained.

o When the customer demands a quick release of the product.

o You can develop prioritized requirements first.

Advantage of Incremental Model

o Errors are easy to be recognized.

o Easier to test and debug

o More flexible.

o Simple to manage risk because it handled during its iteration.

o The Client gets important functionality early.

Disadvantage of Incremental Model

o Need for good planning

o Total Cost is high.

o Well defined module interfaces are needed.

Evolutionary Model

Evolutionary model is a combination of Iterative and Incremental model of software

development life cycle. Delivering your system in a big bang release, delivering it in

incremental process over time is the action done in this model. Some initial requirements

and architecture envisioning need to be done.

It is better for software products that have their feature sets redefined during development

because of user feedback and other factors. The Evolutionary development model divides

the development cycle into smaller, incremental waterfall models in which users are able

to get access to the product at the end of each cycle.

https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-incremental-process-model/

Feedback is provided by the users on the product for the planning stage of the next cycle

and the development team responds, often by changing the product, plan or process.

Therefore, the software product evolves with time.

All the models have the disadvantage that the duration of time from start of the project to

the delivery time of a solution is very high. Evolutionary model solves this problem in a

different approach.

Evolutionary model suggests breaking down of work into smaller chunks,
prioritizing them and then delivering those chunks to the customer one by one.
The number of chunks is huge and is the number of deliveries made to the
customer. The main advantage is that the customer’s confidence increases as
he constantly gets quantifiable goods or services from the beginning of the
project to verify and validate his requirements. The model allows for changing
requirements as well as all work in broken down into maintainable work chunks.

Application of Evolutionary Model:

1. It is used in large projects where you can easily find modules for incremental

implementation. Evolutionary model is commonly used when the customer
wants to start using the core features instead of waiting for the full software.

2. Evolutionary model is also used in object oriented software development
because the system can be easily portioned into units in terms of objects.

Advantages:

• In evolutionary model, a user gets a chance to experiment partially

developed system.
• It reduces the error because the core modules get tested thoroughly.

Disadvantages:

• Sometimes it is hard to divide the problem into several versions that would

be acceptable to the customer which can be incrementally implemented and
delivered.

Unified Process ModelDefinition:

The unified process model (or UPM) is an iterative, incremental, architecture-centric, and use-case
driven approach to software development. Let's first take a look at the use-case driven approach.

Use-Case Driven Approach

A use-case defines the interaction between two or more entities. The list of requirements specified
by a customer are converted to functional requirements by a business analyst and generally referred
to as use-cases. A use-case describes the operation of a software as interactions between the
customer and the system, resulting in a specific output or a measurable return. For example, the
online cake shop can be specified in terms of use cases such as 'add cake to cart,' 'change the
quantity of added cakes in cart,' 'cake order checkout,' and so on. Each use case represents a
significant functionality and could be considered for an iteration.

Architecture-Centric Approach

Now, let's take a closer look at the architecture-centric approach. Using this approach, you'd be
creating a blueprint of the organization of the software system. It would include taking into account
the different technologies, programming languages, operating systems, development and release
environments, server capabilities, and other such areas for developing the software.

Iterative and Incremental Approach

And finally, let's take a closer look at the iterative and incremental approach.

Using an iterative and incremental approach means treating each iteration as a mini-project.
Therefore, you'd develop the software as a number of small mini-projects, working in cycles. You'd
develop small working versions of the software at the end of each cycle. Each iteration would add
some functionality to the software according to the requirements specified by the customer.

Now that we saw the distinctive characteristics of the unified process model, let's take a look at the
process steps involved.

Unified Process Model Phases

We'll go through the four different phases, one at a time, here:

1. Inception: The inception phase is similar to the requirements collection and analysis stage
of the waterfall model of software development. In this phase, you'd collect requirements
from the customer and analyze the project's feasibility, its cost, risks, and profits.

2. Elaboration: In this phase, you'd be expanding upon the activities undertaken in the
inception phase. The major goals of this phase include creating fully functional requirements
(use-cases) and creating a detailed architecture for fulfillment of the requirements. You'd
also prepare a business case document for the customer.

3. Construction: In this phase, you'd be writing actual code and implementing the features for
each iteration. You'd be rolling out the first iteration of the software depending on the key
use-cases that make up the core functionalities of the software system.

4. Transition: In this phase, you'd be rolling out the next iterations to the customer and fixing
bugs for previous releases. You would also deploy builds of the software to the customer.

