
UNIT- 5 

Software Measurement:  
 
A measurement is an manifestation of the size, quantity, amount or dimension of a 
particular attributes of a product or process. Software measurement is a titrate impute 
of a characteristic of a software product or the software process. It is an authority 
within software engineering. Software measurement process is defined and governed 
by ISO Standard. 
 
Need of Software Measurement: 
 
Software is measured to: 

1. Create the quality of the current product or process. 
2. Anticipate future qualities of the product or process. 
3. Enhance the quality of a product or process. 
4. Regulate the state of the project in relation to budget and schedule. 

 
Classification of Software Measurement: 
There are 2 types of software measurement: 
1. Direct Measurement: 

In direct measurement the product, process or thing is measured directly using 
standard scale. 

2. Indirect Measurement: 
In indirect measurement the quantity or quality to be measured is measured using 
related parameter i.e. by use of reference. 

 
Metrics for Software Quality: 

Software metrics can be classified into three categories: 

Product metrics: Describes the characteristics of the product such as size, complexity, 
design features, performance, and quality level. 

• Process metrics: These characteristics can be used to improve the development 
and maintenance activities of the software. 

• Project metrics: This metrics describe the project characteristics and execution.  

o Number of software developer 
o Staffing pattern over the life cycle of software 
o Cost and schedule 
o Productivity 



Some metrics belong to multiple categories. For example, the in-process quality metrics 
of a project are both process metrics and project metrics. 

Software quality metrics: 

Software metrics are a subset of software metrics that focus on the quality aspects of 
the product, process, and project. These are more closely associated with process and 
product metrics than with project metrics. 

Software quality metrics can be further divided into three categories: 
• Product quality metrics 
• In-process quality metrics 
• Maintenance quality metrics 

Product Quality Metrics 
This metrics include the following: 

• Mean Time to Failure 
• Defect Density 
• Customer Problems 
• Customer Satisfaction 

Mean Time to Failure 
It is the time between failures. This metric is mostly used with safety critical systems 
such as the airline traffic control systems, avionics, and weapons. 
 
Defect Density 
It measures the defects relative to the software size expressed as lines of code or 
function point, etc. i.e., it measures code quality per unit. This metric is used in many 
commercial software systems. 
 
Customer Problems 
It measures the problems that customers encounter when using the product. It 
contains the customer’s perspective towards the problem space of the software, which 
includes the non-defect oriented problems together with the defect problems. 
  
The problems metric is usually expressed in terms of Problems per User-Month (PUM). 
 
PUM = Total Problems that customers reported (true defect and non-defect oriented 
problems) for a time period + Total number of license months of the software during the 
period. 
 
Customer Satisfaction: 
Customer satisfaction is often measured by customer survey data through the five-point 
scale: 



• Very satisfied 

• Satisfied 

• Neutral 

• Dissatisfied 

• Very dissatisfied 

Satisfaction with the overall quality of the product and its specific dimensions is usually 
obtained through various methods of customer surveys. Based on the five-point-scale 
data, several metrics with slight variations can be constructed and used, depending on 
the purpose of analysis. For example: 

• Percent of completely satisfied customers 

• Percent of satisfied customers 

• Percent of dis-satisfied customers 

• Percent of non-satisfied customers 

Usually, this percent satisfaction is used. 

In-process Quality Metrics 

In-process quality metrics deals with the tracking of defect arrival during formal 
machine testing for some organizations. This metric includes: 

• Defect density during machine testing 

• Defect arrival pattern during machine testing 

• Phase-based defect removal pattern 

• Defect removal effectiveness 

Defect density during machine testing 

Defect rate during formal machine testing (testing after code is integrated into the 
system library) is correlated with the defect rate in the field. Higher defect rates found 
during testing is an indicator that the software has experienced higher error injection 
during its development process, unless the higher testing defect rate is due to an 
extraordinary testing effort. 

This simple metric of defects per KLOC or function point is a good indicator of quality, 
while the software is still being tested. It is especially useful to monitor subsequent 
releases of a product in the same development organization. 

 



Defect arrival pattern during machine testing 

The overall defect density during testing will provide only the summary of the defects. 
The pattern of defect arrivals gives more information about different quality levels in 
the field. It includes the following: 

• The defect arrivals or defects reported during the testing phase by time interval 
(e.g., week). Here all of which will not be valid defects. 

• The pattern of valid defect arrivals when problem determination is done on the 
reported problems. This is the true defect pattern. 

• The pattern of defect backlog overtime. This metric is needed because 
development organizations cannot investigate and fix all the reported problems 
immediately. This is a workload statement as well as a quality statement. If the 
defect backlog is large at the end of the development cycle and a lot of fixes 
have yet to be integrated into the system, the stability of the system (hence its 
quality) will be affected. Retesting (regression test) is needed to ensure that 
targeted product quality levels are reached. 

Phase-based defect removal pattern 

This is an extension of the defect density metric during testing. In addition to testing, it 
tracks the defects at all phases of the development cycle, including the design reviews, 
code inspections, and formal verifications before testing. 

Because a large percentage of programming defects is related to design problems, 
conducting formal reviews, or functional verifications to enhance the defect removal 
capability of the process at the front-end reduces error in the software. The pattern of 
phase-based defect removal reflects the overall defect removal ability of the 
development process. 

With regard to the metrics for the design and coding phases, in addition to defect 
rates, many development organizations use metrics such as inspection coverage and 
inspection effort for in-process quality management. 

Defect removal effectiveness 

It can be defined as follows: 

DRE=DefectremovedduringadevelopmentphaseDefectslatentintheproduct×100%DRE=
DefectremovedduringadevelopmentphaseDefectslatentintheproduct×100% 

This metric can be calculated for the entire development process, for the front-end 
before code integration and for each phase. It is called early defect removal when used 



for the front-end and phase effectiveness for specific phases. The higher the value of 
the metric, the more effective the development process and the fewer the defects 
passed to the next phase or to the field. This metric is a key concept of the defect 
removal model for software development. 

Maintenance Quality Metrics 

Although much cannot be done to alter the quality of the product during this phase, 
following are the fixes that can be carried out to eliminate the defects as soon as 
possible with excellent fix quality. 

• Fix backlog and backlog management index 

• Fix response time and fix responsiveness 

• Percent delinquent fixes 

• Fix quality 

Fix backlog and backlog management index 

Fix backlog is related to the rate of defect arrivals and the rate at which fixes for 
reported problems become available. It is a simple count of reported problems that 
remain at the end of each month or each week. Using it in the format of a trend chart, 
this metric can provide meaningful information for managing the maintenance process. 

Backlog Management Index (BMI) is used to manage the backlog of open and 
unresolved problems. 

BMI=NumberofproblemsclosedduringthemonthNumberofproblemsarrivedduringthem
onth×100%BMI=NumberofproblemsclosedduringthemonthNumberofproblemsarrived

duringthemonth×100% 

If BMI is larger than 100, it means the backlog is reduced. If BMI is less than 100, then 
the backlog increased. 

Fix response time and fix responsiveness 

The fix response time metric is usually calculated as the mean time of all problems 
from open to close. Short fix response time leads to customer satisfaction. 

The important elements of fix responsiveness are customer expectations, the agreed-to 
fix time, and the ability to meet one's commitment to the customer. 

 



Percent delinquent fixes 

It is calculated as follows: 

PercentDelinquentFixes=PercentDelinquentFixes= 
NumberoffixesthatexceededtheresponsetimecriteriabyceveritylevelNumberoffixesde
liveredinaspecifiedtime×100%Numberoffixesthatexceededtheresponsetimecriteriaby
ceveritylevelNumberoffixesdeliveredinaspecifiedtime×100% 

Fix Quality 

Fix quality or the number of defective fixes is another important quality metric for the 
maintenance phase. A fix is defective if it did not fix the reported problem, or if it fixed 
the original problem but injected a new defect. For mission-critical software, defective 
fixes are detrimental to customer satisfaction. The metric of percent defective fixes is 
the percentage of all fixes in a time interval that is defective. 

A defective fix can be recorded in two ways: Record it in the month it was discovered or 
record it in the month the fix was delivered. The first is a customer measure; the 
second is a process measure. The difference between the two dates is the latent period 
of the defective fix. 

Usually the longer the latency, the more will be the customers that get affected. If the 
number of defects is large, then the small value of the percentage metric will show an 
optimistic picture. The quality goal for the maintenance process, of course, is zero 
defective fixes without delinquency. 
 

Proactive and Reactive 
The basics are simple. Reactive risk management tries to reduce the damage of 
potential threats and speed an organization’s recovery from them, but assumes that 
those threats will happen eventually. Proactive risk management identifies threats and 
aims to prevent those events from ever happening in the first place. 

 
Each strategy has its own activities, metrics, and behaviors that are useful in risk 
analysis. 

Reactive Risk Management 

One fundamental point about reactive risk management is that the disaster or threat 
must occur before management responds. Proactive risk management is all about taking 
preventative measures before the event to decrease its severity, and that’s a good thing 
to do. 



At the same time, however, organizations should develop reactive risk management 
plans that can be deployed after the event. Otherwise management is making decisions 
about how to respond as the event happens, which can be a costly and stressful ordeal. 
 
There’s an obvious catch-22 with reactive risk management. Although this approach 
gives you time to understand the risk before acting, you’re still always one step behind 
the unfolding threat. Other projects will lag as you attend to the problem at hand. 

Helping to Withstand Future Risks 
The reactive approach lear)the organization reacts after the threat has occurred and 
alters its measures to prevent future potential risks. 
Proactive Risk Management 
As the name suggests, proactive risk management means that you identify risks before 
they happen and figure out ways to avoid or alleviate the risk. It seeks to reduce the 
hazard’s risk potential or, even better, prevent the threat altogether. 
 
A good example here is vulnerability testing and remediation. Any organization of 
appreciable size is likely to have vulnerabilities in its software, which attackers could 
find an exploit. So regular testing (or, even better, continuous testing) can help to repair 
those vulnerabilities and eliminate that particular threat. 

Allows for More Control Over Risk Management 
Proactive management strategy gives you more control over your risk management 
generally. You can decide which issues should be top priorities, and what potential 
damage you’re willing to accept. 
 
Proactive management also involves constant monitoring of your systems, risk 
processes, cyber security, competition, business trends, and so forth. By understanding 
the level of risk prior to an event, you can educate and instruct your employees on how 
to mitigate them. 
 
A truly proactive approach, however, does imply that each risk is constantly monitored. 
It also entails regular risk reviews to update the current risk and new risks affecting the 
company. This approach drives management to be always aware of the direction of 
those risks. 
 

 
 
 
 



Software Risk: 
 
Risk is uncertain events associated with future events which have a probability of 
occurrence but it may or may not occur and if occurs it brings loss to the project. Risk 
identification and management are very important task during software project 
development because success and failure of any software project depends on it. 
 
Types of Risk: 
 
1. Schedule Risk : 

Schedule related risks refers to time related risks or project delivery related 
planning risks. The wrong schedule affects the project development and delivery. 
These risks are mainly indicates to running behind time as a result project 
development doesn’t progress timely and it directly impacts to delivery of project. 
Finally if schedule risks are not managed properly it gives rise to project failure and 
at last it affect to organization/company economy very badly. 
Some reasons for Schedule risks – 

• Time is not estimated perfectly 
• Improper resource allocation 
• Tracking of resources like system, skill, staff etc 
• Frequent project scope expansion 
• Failure in function identification and its’ completion 

2. Budget Risk : 
Budget related risks refers to the monetary risks mainly it occurs due to budget 
overruns. Always the financial aspect for the project should be managed as per 
decided but if financial aspect of project mismanaged then there budget concerns 
will arise by giving rise to budget risks. So proper finance distribution and 
management are required for the success of project otherwise it may lead to 
project failure. 
Some reasons for Budget risks: 

• Wrong/Improper budget estimation 
• Unexpected Project Scope expansion 
• Mismanagement in budget handling 
• Cost overruns 
• Improper tracking of Budget 

3. Operational Risks : 
Operational risk refers to the procedural risks means these are the risks which 
happen in day-to-day operational activities during project development due to 
improper process implementation or some external operational risks. 



Some reasons for Operational risks: 

• Insufficient resources 
• Conflict between tasks and employees 
• Improper management of tasks 
• No proper planning about project 
• Less number of skilled people 
• Lack of communication and cooperation 
• Lack of clarity in roles and responsibilities 
• Insufficient training 

4. Technical Risks : 
Technical risks refers to the functional risk or performance risk which means this 
technical risk mainly associated with functionality of product or performance part 
of the software product. 
Some reasons for Technical risks: 

• Frequent changes in requirement 
• Less use of future technologies 
• Less number of skilled employee 
• High complexity in implementation 
• Improper integration of modules 

5. Programmatic Risks : 
Programmatic risks refers to the external risk or other unavoidable risks. These are 
the external risks which are unavoidable in nature. These risks come from outside 
and it is out of control of programs. 
Some reasons for Programmatic risks: 

• Rapid development of market 
• Running out of fund / Limited fund for project development 
• Changes in Government rules/policy 
• Loss of contracts due to any reason 

 
 
Methods for Identifying Risks 

 
Identifying risk is one of most important or essential and initial steps in risk 
management process. By chance, if failure occurs in identifying any specific or particular 
risk, then all other steps that are involved in risk management will not be implemented 
for that particular risk. For identifying risk, project team should review scope of 
program, estimate cost, schedule, technical maturity, parameters of key performance, 
etc. 
 

https://www.geeksforgeeks.org/software-engineering-risk-management/


To manage risk, project team or organization are needed to know about what risks it 
faces, and then to evaluate them. Generally, identification of risk is an iterative process. 
It basically includes generating or creating comprehensive list of threats and 
opportunities that are based on events that can enhance, prevent, degrade, accelerate, 
or might delay successful achievement of objectives. In simple words, if you don’t find 
or identify risk, you won’t be able to manage it. 

Methods for Identifying Risks : 
Earlier, there were no easy methods available that will surely identify all risks. But 
nowadays, there are some additional approaches available for identifying risks. Some of 
approaches for risk identification are given below: 
 
1. Checklist Analysis: 

Checklist Analysis is type of technique generally used to identify or find risks and 
manage it. The checklist is basically developed by listing items, steps, or even tasks 
and is then further analyzed against criteria to just identify and determine if 
procedure is completed correctly or not. It is list of risk that is just found to occur 
regularly in development of software project. 
Below is the list of software development risk by Barry Boehm- modified version. 

Risk Risk Reduction Technique 

Personnel 
Shortfalls 

Various techniques include 
training and career 
development, job-matching, 
teambuilding, etc. 

Unrealistic time 
and cost 
estimates 

Various techniques include 
incremental development, 
standardization of methods, 
recording, and analysis of the 
past project, etc. 

Development of 
wrong software 
functions 

Various techniques include 
formal specification methods, 
user surveys, etc. 

Development of 
the wrong user 
interface 

Various techniques include user 
involvement, prototyping, etc. 



2. Brainstorming: 
This technique provides and gives free and open approach that usually encourages 
each and everyone on project team to participate. It also results in greater sense of 
ownership of project risk, and team generally committed to managing risk for given 
time period of project. It is creative and unique technique to gather risks 
spontaneously by team members. The team members identify and determine risks 
in ‘no wrong answer’ environment. This technique also provides opportunity for 
team members to always develop on each other’s ideas. This technique is also used 
to determine best possible solution to problems and issue that arises and emerge. 

3. Casual Mapping: 
Causal mapping is method that builds or develops on reflection and review of 
failure factors in cause and effect of the diagrams. It is very useful for facilitating 
learning with an organization or system simply as method of project-post 
evaluation. It is also key tool for risk assessment. 

4. SWOT Analysis: 
Strengths-Weaknesses-Opportunities-Threat (SWOT) is very technique and helpful 
for identifying risks within greater organization context. It is generally used as 
planning tool for analyzing business, its resources, and also its environment simply 
by looking at internal strengths and weaknesses and opportunities and threats in 
external environment. It is technique often used in formulation of strategy. The 
appropriate time and effort should be spent on thinking seriously about 
weaknesses and threats of organization for SWOT analysis to more effective and 
successful in risk identification. 

5. Flowchart Method: 
This method allows for dynamic process to be diagrammatically represented in 
paper. This method is generally used to represent activities of process graphically 
and sequentially to simply identify the risk. 

 

Risk Projection: 

Risk projection, also called risk estimation, attempts to rate each risk in two ways—the 
likelihood or probability that the risk is real and the consequences of the problems 
associated with the risk, should it occur. 

The project planner, along with other managers and technical staff, performs four risk 
projection activities: 

(1) Establish a scale that reflects the perceived likelihood of a risk. 
(2) Delineate the consequences of the risk. 
(3) Estimate the impact of the risk on the project and the product. 
(4) Note the overall accuracy of the risk projection so that there will be no 
misunderstandings. 



Developing a Risk Table 
Risk table provides a project manager with a simple technique for risk projection. 
Steps in Setting up Risk Table 
(1) Project team begins by listing all risks in the first column of the table. 

Accomplished with the help of the risk item checklists. 
(2) Each risk is categorized in the second column. 

(e.g. PS implies a project size risk, BU implies a business risk). 
(3) The probability of occurrence of each risk is entered in the next column of the table. 
The probability value for each risk can be estimated by team members individually. 
(4) Individual team members are polled in round-robin fashion until their assessment of 
risk probability begins to converge. 
 

Assessing Risk Impact 

Nature of the risk - the problems that are likely if it occurs. 

e.g. a poorly defined external interface to customer hardware (a technical risk) will 
preclude early design and testing and will likely lead to system integration problems late 
in a project. 

Scope of a risk - combines the severity with its overall distribution (how much of the 
project will be affected or how many customers are harmed?). 

Timing of a risk - when and how long the impact will be felt. 

Overall risk exposure, RE, determined using: 

RE = P x C 

P is the probability of occurrence for a risk. 

C is the the cost to the project should the risk occur. 

 

Risk Refinement: 

During early stages of project planning, a risk may be stated quite generally. As time 

passes and more is learned about the project and the risk, it may be possible to refine 

the risk into a set of more detailed risks, each somewhat easier to mitigate, monitor, 

and manage. 

 
 



One way to do this is to represent the risk in condition-transition-consequence (CTC) 
format . That is, the risk is stated in the following form: Given that <condition> then 
there is concern that (possibly) <consequence>. 
 
Using the CTC format for the reuse risk noted in Section 6.4.2, we can write: 
 
Given that all reusable software components must conform to specific design standards 
and that some do not conform, then there is concern that (possibly) only 70 percent of 
the planned reusable modules may actually be integrated into the as-built system, 
resulting in the need to custom engineer the remaining 30 percent of components. 

 

This general condition can be refined in the following manner: 

 

Subcondition 1. Certain reusable components were developed by a third party with no 

knowledge of internal design standards. 

Subcondition 2. The design standard for component interfaces has not been solidified 

and may not conform to certain existing reusable components. 

Subcondition 3. Certain reusable components have been implemented in a language 

that is not supported on the target environment. 

The consequences associated with these refined sub conditions remains the same (i.e., 

30 percent of software components must be customer engineered), but the refinement 

helps to isolate the underlying risks and might lead to easier analysis and response. 

 

RMMM: 
A risk management strategy can be defined as a software project plan or the risk 
management steps. It can be organized into a separate Risk Mitigation, Monitoring and 
Management Plan. The RMMM plan documents all work performed as part of risk 
analysis and is used by the project manager as part of the overall project plan. 

Teams do not develop a formal RMMM document. Rather, each risk is documented 
individually using a risk information sheet . In most cases, the RIS is maintained using a 
database system, so that creation and information entry, priority ordering, searches, 
and other analysis may be accomplished easily. 



Once RMMM has been documented and the project has begun, risk mitigation and 
monitoring steps commence. As we have already discussed, risk mitigation is a problem 
avoidance activity. Risk monitoring is a project tracking activity with three primary 
objectives: 

(1) to assess whether predicted risks occur. 

(2) to ensure that risk aversion steps defined for the risk are being properly      
applied; and 

(3) to collect information that can be used for future risk analysis. 

Effective strategy must consider three issues: 

• risk avoidance 
• risk monitoring 
• risk management and contingency planning. 

 
RMMM Plan:  
 
A risk management technique is usually seen in the software Project plan. This 
can be divided into Risk Mitigation, Monitoring, and Management Plan (RMMM). 
In this plan, all works are done as part of risk analysis. As part of the overall 
project plan project manager generally uses this RMMM plan.  
 
In some software teams, risk is documented with the help of a Risk Information 
Sheet (RIS). This RIS is controlled by using a database system for easier 
management of information i.e creation, priority ordering, searching, and other 
analysis. After documentation of RMMM and start of a project, risk mitigation 
and monitoring steps will start.  

  

Risk Mitigation :  
It is an activity used to avoid problems (Risk Avoidance).  
Steps for mitigating the risks as follows.  
 
1. Finding out the risk.  
2. Removing causes that are the reason for risk creation.  
3. Controlling the corresponding documents from time to time.  
4. Conducting timely reviews to speed up the work. 
Risk Monitoring :  
It is an activity used for project tracking.  
It has the following primary objectives as follows.  
  



1. To check if predicted risks occur or not.  
2. To ensure proper application of risk aversion steps defined for risk.  
3. To collect data for future risk analysis.  
4. To allocate what problems are caused by which risks throughout the project. 
Risk Management and planning :  
It assumes that the mitigation activity failed and the risk is a reality. This task is 
done by Project manager when risk becomes reality and causes severe 
problems. If the project manager effectively uses project mitigation to remove 
risks successfully then it is easier to manage the risks. This shows that the 
response that will be taken for each risk by a manager. The main objective of 
the risk management plan is the risk register. This risk register describes and 
focuses on the predicted threats to a software project. 
  
Example: 
Let us understand RMMM with the help of an example of high staff turnover. 

Risk Mitigation: 
To mitigate this risk, project management must develop a strategy for reducing 
turnover. The possible steps to be taken are: 

• Meet the current staff to determine causes for turnover (e.g., poor working 
conditions, low pay, competitive job market). 

• Mitigate those causes that are under our control before the project starts. 
• Once the project commences, assume turnover will occur and develop 

techniques to ensure continuity when people leave. 
• Organize project teams so that information about each development activity 

is widely dispersed. 
• Define documentation standards and establish mechanisms to ensure that 

documents are developed in a timely manner. 
• Assign a backup staff member for every critical technologist. 
Risk Monitoring: 
As the project proceeds, risk monitoring activities commence. The project 
manager monitors factors that may provide an indication of whether the risk is 
becoming more or less likely. In the case of high staff turnover, the following 
factors can be monitored: 

• General attitude of team members based on project pressures. 
• Interpersonal relationships among team members. 
• Potential problems with compensation and benefits. 
• The availability of jobs within the company and outside it. 
Risk Management: 
Risk management and contingency planning assumes that mitigation efforts 
have failed and that the risk has become a reality. Continuing the example, the 
project is well underway, and a number of people announce that they will be 



leaving. If the mitigation strategy has been followed, backup is available, 
information is documented, and knowledge has been dispersed across the 
team. In addition, the project manager may temporarily refocus resources (and 
readjust the project schedule) to those functions that are fully staffed, enabling 
newcomers who must be added to the team to “get up to the speed“. 
 
Drawbacks of RMMM: 
• It incurs additional project costs. 
• It takes additional time. 
• For larger projects, implementing an RMMM may itself turn out to be another 

tedious project. 
• RMMM does not guarantee a risk-free project, infact, risks may also come 

up after the project is delivered. 
 

Software Quality Assurance (SQA): 
 
Software Quality Assurance is simply a way to assure quality in the software. It is the 
set of activities which ensure processes, procedures as well as standards are suitable 
for the project and implemented correctly.  
 
Software Quality Assurance is a process which works parallel to development of 
software. It focuses on improving the process of development of software so that 
problems can be prevented before they become a major issue. Software Quality 
Assurance is a kind of Umbrella activity that is applied throughout the software 
process.   

Software Quality Assurance has:  
1. A quality management approach  
2. Formal technical reviews  
3. Multi testing strategy  
4. Effective software engineering technology  
5. Measurement and reporting mechanism  

  
Major Software Quality Assurance Activities:  
1. SQA Management Plan:  

Make a plan for how you will carry out the sqa through out the project. Think about 
which set of software engineering activities are the best for project. check level of 
sqa team skills.  

2. Set The Check Points:  
SQA team should set checkpoints. Evaluate the performance of the project on the 
basis of collected data on different check points.  
  



3. Multi testing Strategy:  
Do not depend on a single testing approach. When you have a lot of testing 
approaches available use them.  
  

4. Measure Change Impact:  
The changes for making the correction of an error sometimes re introduces more 
errors keep the measure of impact of change on project. Reset the new change to 
change check the compatibility of this fix with whole project.  
  

5. Manage Good Relations:  
In the working environment managing good relations with other teams involved in 
the project development is mandatory. Bad relation of sqa team with programmers 
team will impact directly and badly on project. Don’t play politics.   
  

Benefits of Software Quality Assurance (SQA):  
  
1. SQA produces high quality software.  
2. High quality application saves time and cost.  
3. SQA is beneficial for better reliability.  
4. SQA is beneficial in the condition of no maintenance for a long time.  
5. High quality commercial software increase market share of company.  
6. Improving the process of creating software.  
7. Improves the quality of the software.  

  
Disadvantage of SQA:  
There are a number of disadvantages of quality assurance. Some of them include 
adding more resources, employing more workers to help maintain quality and so much 
more. 
 

Software Review: 
 
Software Review is systematic inspection of a software by one or more individuals who 
work together to find and resolve errors and defects in the software during the early 
stages of Software Development Life Cycle (SDLC). Software review is an essential part 
of Software Development Life Cycle (SDLC) that helps software engineers in validating 
the quality, functionality and other vital features and components of the software. It is 
a whole process that includes testing the software product and it makes sure that it 
meets the requirements stated by the client. 
 



Usually performed manually, software review is used to verify various documents like 
requirements, system designs, codes, test plans and test cases. 

  

Objectives of Software Review: 
The objective of software review is: 
 

1. To improve the productivity of the development team. 
2. To make the testing process time and cost effective. 
3. To make the final software with fewer defects. 
4. To eliminate the inadequacies. 

 
Process of Software Review: 

 
Types of Software Reviews: 
There are mainly 3 types of software reviews: 
1. Software Peer Review: 

Peer review is the process of assessing the technical content and quality of the 
product and it is usually conducted by the author of the work product along with 
some other developers. 
Peer review is performed in order to examine or resolve the defects in the 
software, whose quality is also checked by other members of the team. 
Peer Review has following types: 

• (i) Code Review: 
Computer source code is examined in a systematic way. 

• (ii) Pair Programming: 
It is a code review where two developers develop code together at the same 
platform. 

• (iii) Walkthrough: 
Members of the development team is guided bu author and other interested 
parties and the participants ask questions and make comments about defects. 



• (iv) Technical Review: 
A team of highly qualified individuals examines the software product for its 
client’s use and identifies technical defects from specifications and standards.  

• (v) Inspection: 
In inspection the reviewers follow a well-defined process to find defects. 

2. Software Management Review: 
Software Management Review evaluates the work status. In this section decisions 
regarding downstream activities are taken. 

3. Software Audit Review: 
Software Audit Review is a type of external review in which one or more critics, 
who are not a part of the development team, organize an independent inspection 
of the software product and its processes to assess their compliance with stated 
specifications and standards. This is done by managerial level people. 

Advantages of Software Review: 
• Defects can be identified earlier stage of development (especially in formal review). 
• Earlier inspection also reduces the maintenance cost of software. 
• It can be used to train technical authors. 
• It can be used to remove process inadequacies that encourage defects. 
 
 

Formal Technical Review (FTR): 
 
FTR is a software quality control activity performed by software engineers.  
Objectives of formal technical review (FTR): 
Some of these are: 
• Useful to uncover error in logic, function and implementation for any 

representation of the software. 
• The purpose of FTR is to verify that the software meets specified requirements.  
• To ensure that software is represented according to predefined standards. 
• It helps to review the uniformity in software that is development in a uniform 

manner. 
• To makes the project more manageable. 
 
The review meeting: 
Each review meeting should be held considering the following constraints- 
Involvement of people: 
1. Between 3, 4 and 5 people should be involve in the review. 
2. Advance preparation should occur but it should be very short that is at the most 2 

hours of work for every person. 



3. The short duration of the review meeting should be less than two hour. Gives these 
constraints, it should be clear that an FTR focuses on specific (and small) part of the 
overall software. 

At the end of the review, all attendees of FTR must decide what to do. 

1. Accept the product without any modification. 
2. Reject the project due to serious error (Once corrected, another app need to be 

reviewed), or 
3. Accept the product provisional (minor errors are encountered and are should be 

corrected, but no additional review will be required). 
Review reporting and record keeping: 
1. During the FTR, the reviewer actively records all issues that have been raised. 
2. At the end of the meeting all these issues raised are consolidated and a review list 

is prepared. 
3. Finally, a formal technical review summary report is prepared. 
It answers three questions: 

1. What was reviewed ? 
2. Who reviewed it ? 
3. What were the findings and conclusions ? 
 
Review guidelines: 
Review the product, not the manufacture (producer). 
1. Take written notes (record purpose) 
2. Limit the number of participants and insists upon advance preparation. 
3. Develop a checklist for each product that is likely to be reviewed. 
4. Allocate resources and time schedule for FTRs in order to maintain time schedule. 
5. Conduct meaningful training for all reviewers in order to make reviews effective. 
6. Reviews earlier reviews which serve as the base for the current review being 

conducted. 
7. Set an agenda and maintain it. 
8. Separate the problem areas, but do not attempt to solve every problem notes.  
9. Limit debate and rebuttal. 
 

 
Statistical Quality Assurence: 
 
Traditional compliance testing techniques can sometimes provide limited pass/fail 
information, which results in insufficient measurements on the batch’s quality control, 
identification of the root cause of failure results and overall quality assurance (QA) in 
the production process. 



SQA consists of three major methodologies: 

1. Force Diagram: A Force Diagram describes how a product should be tested. 
Intertek engineers base the creation of Force Diagrams on our knowledge of 
foreseeable use, critical manufacturing process and critical components that have 
high potential to fail. 

2. Test-to-Failure (TTF): Unlike any legal testing, TTF tells manufacturers on how 
many defects they are likely to find in every million units of output. This 
information is incorporated into the process and concludes if a product needs 
improvement in quality or if it is being over engineered, which will eventually 
lead to cost savings. 

3. Intervention: Products are separated into groups according to the total 
production quantity and production lines. Each group then undergoes an 
intervention. The end result is measured by Z-value, which is the indicator of 
quality and consistency of a product to a specification. Intervention allows 
manufacturers to pinpoint a defect to a specific lot and production line; thus 
saving time and money in corrective actions. 

 

Software Reliablity: 
 
Software Reliability is an essential connect of software quality, composed with 
functionality, usability, performance, serviceability, capability, installability, 
maintainability, and documentation. Software Reliability is hard to achieve because the 
complexity of software turn to be high. While any system with a high degree of 
complexity, containing software, will be hard to reach a certain level of reliability, 
system developers tend to push complexity into the software layer, with the speedy 
growth of system size and ease of doing so by upgrading the software. 
 
 
The ISO 9000 quality standards: 
 
The International organization for Standardization is a world wide federation of 
national standard bodies. The International standards organization (ISO) is a standard 
which serves as a for contract between independent parties. It specifies guidelines for 
development of quality system. 
 
Why ISO Certification required by Software Industry? 



 
There are several reasons why software industry must get an ISO certification. Some of 
reasons are as follows : 
• This certification has become a standards for international bidding. 
• It helps in designing high-quality repeatable software products. 
• It emphasis need for proper documentation. 
• It facilitates development of optimal processes and totally quality measurements.  
Features of ISO 9001 Requirements : 
• Document control: 

All documents concerned with the development of a software product should be 
properly managed and controlled. 

• Planning: 
Proper plans should be prepared and monitored. 

• Review: 
For effectiveness and correctness all important documents across all phases should 
be independently checked and reviewed . 

• Testing: 
The product should be tested against specification. 

• Organizational Aspects: 
Various organizational aspects should be addressed e.g., management reporting of 
the quality team. 


